A multivariate modeling method for the prediction of low fetal fraction before noninvasive prenatal testing

多元统计 分数(化学) 多元分析 产前诊断 医学 胎儿 产科 统计 怀孕 内科学 数学 生物 化学 遗传学 色谱法
作者
Liang Hu,Yuanyuan Pei,Xiaojin Luo,Lijuan Wen,Hui Xiao,Jin‐Xing Liu,Liping Wu,Gaochi Li,Fengxiang Wei
出处
期刊:Science Progress [SAGE]
卷期号:104 (4): 003685042110523-003685042110523
标识
DOI:10.1177/00368504211052359
摘要

To investigate factors associated with fetal fraction and to develop a new predictive method for low fetal fraction before noninvasive prenatal testing.The study was a retrospective cohort analysis based on the results of noninvasive prenatal testing, complete blood count, thyroxin test, and Down's syndrome screening during the first or second trimester in 14,043 pregnant women. Random forests algorithm was applied to predict the low fetal fraction status (fetal fraction < 4%) through individual information and laboratory records. The performance of the model was evaluated and compared to predictions using maternal weight.Of 14,043 cases, maternal weight, red blood cell, hemoglobin, and free T3 were significantly negatively correlated with fetal fraction while gestation age, free T4, pregnancy-associated plasma protein-A, alpha-fetoprotein, unconjugated estriol, and β-human chorionic gonadotropin were significantly positively correlated with fetal fraction. Compared to predictions using maternal weight as an isolated parameter, the model had a higher area under the curve of receiver operating characteristic and overall accuracy.The comprehensive predictive method based on combined multiple factors was more effective than a single-factor model in low fetal fraction status prediction. This method can provide more pretest quality control for noninvasive prenatal testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Chikit完成签到,获得积分0
2秒前
ccc完成签到 ,获得积分10
2秒前
Orange应助哈哈哈哈哈采纳,获得10
2秒前
hahhh7发布了新的文献求助20
2秒前
Yan发布了新的文献求助10
3秒前
糟糕的冬莲完成签到 ,获得积分10
4秒前
lish完成签到,获得积分20
4秒前
5秒前
mmm完成签到,获得积分10
5秒前
LY_Qin发布了新的文献求助50
6秒前
6秒前
guojinyu发布了新的文献求助10
7秒前
7秒前
努力的小狗屁应助尧77采纳,获得10
7秒前
单薄的半鬼完成签到,获得积分10
7秒前
wanci应助BaATor采纳,获得10
10秒前
xdf完成签到,获得积分10
10秒前
11秒前
辛勤的乌发布了新的文献求助10
11秒前
11秒前
zyd发布了新的文献求助10
12秒前
追寻不平发布了新的文献求助10
12秒前
Jinyi发布了新的文献求助10
13秒前
Jasper应助zhu采纳,获得10
13秒前
szk完成签到,获得积分10
14秒前
调研昵称发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
森巴小妹发布了新的文献求助10
16秒前
17秒前
甜美的月饼应助欣喜惜筠采纳,获得10
17秒前
yuyuyuan完成签到,获得积分10
17秒前
18秒前
罗成完成签到,获得积分10
18秒前
LongH2完成签到,获得积分10
19秒前
完美世界应助云氲采纳,获得10
20秒前
lemono_o完成签到,获得积分10
21秒前
张大力发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160558
求助须知:如何正确求助?哪些是违规求助? 2811730
关于积分的说明 7893251
捐赠科研通 2470605
什么是DOI,文献DOI怎么找? 1315658
科研通“疑难数据库(出版商)”最低求助积分说明 630920
版权声明 602042