计算机科学
卷积神经网络
可验证秘密共享
正确性
MNIST数据库
核(代数)
理论计算机科学
卷积(计算机科学)
论证(复杂分析)
简单(哲学)
推论
人工神经网络
霍尔
算法
人工智能
离散数学
数学
程序设计语言
生物化学
认识论
哲学
集合(抽象数据类型)
化学
作者
Seunghwa Lee,Hankyung Ko,Jihye Kim,Hyunok Oh
出处
期刊:IEEE Transactions on Dependable and Secure Computing
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:21 (4): 4254-4270
被引量:19
标识
DOI:10.1109/tdsc.2023.3348760
摘要
It is becoming important for the client to be able to check whether the AI inference services have been correctly calculated. Since the weight values in a CNN model are assets of service providers, the client should be able to check the correctness of the result without them. The Zero-knowledge Succinct Non-interactive Argument of Knowledge (zk-SNARK) allows verifying the result without input and weight values. However, the proving time in zk-SNARK is too slow to be applied to real AI applications. This article proposes a new efficient verifiable convolutional neural network (vCNN) framework that greatly accelerates the proving performance. We introduce a new efficient relation representation for convolution equations, reducing the proving complexity of convolution from O(ln) to O(l+n) compared to existing zero-knowledge succinct non-interactive argument of knowledge (zk-SNARK) approaches, where l and n denote the size of the kernel and the data in CNNs. Experimental results show that the proposed vCNN improves proving performance by 20-fold for a simple MNIST and 18,000-fold for VGG16. The security of the proposed scheme is formally proven.
科研通智能强力驱动
Strongly Powered by AbleSci AI