vCNN: Verifiable Convolutional Neural Network Based on zk-SNARKs

计算机科学 卷积神经网络 可验证秘密共享 正确性 MNIST数据库 核(代数) 理论计算机科学 卷积(计算机科学) 论证(复杂分析) 简单(哲学) 推论 人工神经网络 霍尔 算法 人工智能 离散数学 数学 程序设计语言 生物化学 化学 哲学 集合(抽象数据类型) 认识论
作者
Seunghwa Lee,Hankyung Ko,Jihye Kim,Hyunok Oh
出处
期刊:IEEE Transactions on Dependable and Secure Computing [IEEE Computer Society]
卷期号:21 (4): 4254-4270 被引量:19
标识
DOI:10.1109/tdsc.2023.3348760
摘要

It is becoming important for the client to be able to check whether the AI inference services have been correctly calculated. Since the weight values in a CNN model are assets of service providers, the client should be able to check the correctness of the result without them. The Zero-knowledge Succinct Non-interactive Argument of Knowledge (zk-SNARK) allows verifying the result without input and weight values. However, the proving time in zk-SNARK is too slow to be applied to real AI applications. This article proposes a new efficient verifiable convolutional neural network (vCNN) framework that greatly accelerates the proving performance. We introduce a new efficient relation representation for convolution equations, reducing the proving complexity of convolution from O(ln) to O(l+n) compared to existing zero-knowledge succinct non-interactive argument of knowledge (zk-SNARK) approaches, where l and n denote the size of the kernel and the data in CNNs. Experimental results show that the proposed vCNN improves proving performance by 20-fold for a simple MNIST and 18,000-fold for VGG16. The security of the proposed scheme is formally proven.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanmiao12完成签到,获得积分10
1秒前
香蕉觅云应助momo采纳,获得10
3秒前
4秒前
5秒前
爆米花应助李春鸿采纳,获得10
8秒前
LJJ发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
12秒前
Ava应助YYH采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
小田心完成签到,获得积分10
12秒前
15秒前
小田心发布了新的文献求助10
15秒前
WYH发布了新的文献求助10
16秒前
一方通行发布了新的文献求助10
16秒前
SherlockHe发布了新的文献求助10
17秒前
FashionBoy应助热情的达采纳,获得10
17秒前
20秒前
lelelele发布了新的文献求助10
21秒前
拜拜完成签到,获得积分10
22秒前
22秒前
扶苏完成签到,获得积分10
22秒前
24秒前
mmm完成签到,获得积分20
25秒前
momo发布了新的文献求助10
25秒前
25秒前
一方通行完成签到,获得积分10
25秒前
xiaosu完成签到,获得积分10
26秒前
小马甲应助yyy采纳,获得10
29秒前
热情的达发布了新的文献求助10
29秒前
Hello应助任性的咖啡采纳,获得10
30秒前
30秒前
墨墨完成签到,获得积分10
30秒前
31秒前
cangy完成签到,获得积分10
32秒前
岸部完成签到,获得积分10
32秒前
在水一方应助WYH采纳,获得10
33秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173