Managing the Nitrogen Cycle via Plasmonic (Photo)Electrocatalysis: Toward Circular Economy

可再生能源 化石燃料 电合成 可再生燃料 纳米技术 储能 环境科学 化学 材料科学 电化学 工程类 有机化学 电气工程 物理 物理化学 功率(物理) 量子力学 电极
作者
Mohammadreza Nazemi,Mostafa A. El‐Sayed
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (23): 4294-4304 被引量:30
标识
DOI:10.1021/acs.accounts.1c00446
摘要

As renewable energy sources are either intermittent in nature or remote in location, developing cost-effective, sustainable, modular systems and technologies to store and transport renewables at an industrial scale is imperative. Storing cheap renewable electricity into chemical bonds (i.e., chemical energy storage) could be a transformative opportunity for reliable and resilient grid energy storage. This approach enables renewables to be stored and shipped similarly to fossil fuels. Currently, the chemical industry primarily consumes fossil feedstock as an energy source, which has been the standard for over a century. A paradigm shift is required to move toward a more sustainable route for chemical synthesis by electrifying and decarbonizing the modern chemical industry. As renewable electricity costs decrease, (photo)electrosynthesis is gaining interest for synthesizing high-value and high-energy fuels and molecules in a clean, sustainable, and decentralized manner.The nitrogen cycle is one of the Earth's most critical biogeochemical cycles since nitrogen is a vital element for all living organisms. Artificial nitrogen fixation via a (photo)electrochemical system powered by renewables provides an alternative route to resource- and carbon-intensive thermochemical processes. (Photo)electrochemical nitrogen fixation at a large scale necessitates the discovery of active, selective, and stable heterogeneous (photo)electrocatalysts. In addition, the use of advanced in situ and operando spectroscopic techniques is needed to pinpoint the underlying reaction mechanisms. The selectivity of nitrogen (N2) molecules on the catalyst surface and suppressing thermodynamically favorable side reactions (e.g., hydrogen evolution reaction) are the main bottlenecks in improving the rate of (photo)electrochemical nitrogen fixation in aqueous solutions. The rational design of electrode, electrolyte, and reactors is required to weaken the strong nitrogen-nitrogen triple bond (N≡N) at or near ambient conditions. This Account covers our group's recent advances in synthesizing shape-controlled hybrid plasmonic nanoparticles, including plasmonic-semiconductor and plasmonic-transition metal nanostructures with increased surface areas. The nanocatalysts' selectivity and activity toward nitrogen conversion are benchmarked in liquid- and gas-phase electrochemical systems. We leverage operando vibrational-type spectroscopy (i.e., surface-enhanced Raman spectroscopy (SERS)) to identify intermediate species relevant to nitrogen fixation at the electrode-electrolyte interface to gain mechanistic insights into reaction mechanisms, leading to the discovery of more efficient catalysts. Operando SERS revealed that the nitrogen reduction reaction (NRR) to ammonia on hybrid plasmonic-transition metal nanoparticle surfaces (e.g., Pd-Ag) occurs through an associative mechanism. In the NRR process, hydrazine (N2H4) is consumed as an intermediate species. A femtosecond pulsed laser is used to synthesize hybrid plasmonic photocatalysts with homogeneously distributed Pd atoms on a Au nanorod surface, resulting in enhanced optoelectronic and catalytic properties. The overarching goal is to develop modular photoelectrochemical systems for long-duration renewable energy storage. In the context of nitrogen fixation, we aim to propose strategies to manage the nitrogen cycle through the interconversion of N2 and active nitrogen-containing compounds (e.g., NH3, NOx), enabling a circular nitrogen economy with sustainable and positive social and economic outcomes. The versatile approaches presented in this Account can inform future opportunities in (photo)electrochemical energy conversion systems and solar fuel-based applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
泯珉发布了新的文献求助10
2秒前
cong666完成签到,获得积分10
3秒前
安之若素完成签到,获得积分10
4秒前
W sir完成签到,获得积分10
4秒前
wxy发布了新的文献求助10
4秒前
刻苦的雪莲完成签到,获得积分20
5秒前
F.T完成签到,获得积分10
6秒前
Jason应助酶没美镁采纳,获得10
6秒前
龙虾发票发布了新的文献求助10
7秒前
英姑应助DH采纳,获得10
9秒前
Owen应助DH采纳,获得10
9秒前
斯文败类应助科研狗采纳,获得10
10秒前
自来完成签到 ,获得积分10
10秒前
胖虎不胖完成签到,获得积分0
14秒前
14秒前
脑洞疼应助阿诺德采纳,获得10
15秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
16秒前
5度转角应助mmyhn采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
16秒前
英姑应助科研通管家采纳,获得10
16秒前
ZnCu应助科研通管家采纳,获得30
16秒前
16秒前
16秒前
sunaijia完成签到,获得积分10
16秒前
Orange应助勇往直前采纳,获得10
17秒前
小马甲应助粱乘风采纳,获得10
19秒前
20秒前
20秒前
Sherry发布了新的文献求助10
20秒前
四叶草发布了新的文献求助10
21秒前
彼岸发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
24秒前
25秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
Development and Industrialization of Stereoregular Polynorbornenes 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3421342
求助须知:如何正确求助?哪些是违规求助? 3022175
关于积分的说明 8899423
捐赠科研通 2709441
什么是DOI,文献DOI怎么找? 1485747
科研通“疑难数据库(出版商)”最低求助积分说明 686900
邀请新用户注册赠送积分活动 681943