Influence Maximization with Latency Requirements on Social Networks

数学优化 整数规划 计算机科学 最大化 图形 多项式的 时间复杂性 节点(物理) 集合(抽象数据类型) 数学 理论计算机科学 算法 结构工程 工程类 数学分析 程序设计语言
作者
S. Raghavan,Rui Zhang
出处
期刊:Informs Journal on Computing 卷期号:34 (2): 710-728 被引量:5
标识
DOI:10.1287/ijoc.2021.1095
摘要

Targeted marketing strategies are of significant interest in the smartapp economy. Typically, one seeks to identify individuals to strategically target in a social network so that the network is influenced at a minimal cost. In many practical settings, the effects of direct influence predominate, leading to the positive influence dominating set with partial payments (PIDS-PP) problem that we discuss in this paper. The PIDS-PP problem is NP-complete because it generalizes the dominating set problem. We discuss several mixed integer programming formulations for the PIDS-PP problem. First, we describe two compact formulations on the payment space. We then develop a stronger compact extended formulation. We show that when the underlying graph is a tree, this compact extended formulation provides integral solutions for the node selection variables. In conjunction, we describe a polynomial-time dynamic programming algorithm for the PIDS-PP problem on trees. We project the compact extended formulation onto the payment space, providing an equivalently strong formulation that has exponentially many constraints. We present a polynomial time algorithm to solve the associated separation problem. Our computational experience on a test bed of 100 real-world graph instances (with up to approximately 465,000 nodes and 835,000 edges) demonstrates the efficacy of our strongest payment space formulation. It finds solutions that are on average 0.4% from optimality and solves 80 of the 100 instances to optimality. Summary of Contribution: The study of influence propagation is important in a number of applications including marketing, epidemiology, and healthcare. Typically, in these problems, one seeks to identify individuals to strategically target in a social network so that the entire network is influenced at a minimal cost. With the ease of tracking consumers in the smartapp economy, the scope and nature of these problems have become larger. Consequently, there is considerable interest across multiple research communities in computationally solving large-scale influence maximization problems, which thus represent significant opportunities for the development of operations research–based methods and analysis in this interface. This paper introduces the positive influence dominating set with partial payments (PIDS-PP) problem, an influence maximization problem where the effects of direct influence predominate, and it is possible to make partial payments to nodes that are not targeted. The paper focuses on model development to solve large-scale PIDS-PP problems. To this end, starting from an initial base optimization model, it uses several operations research model strengthening techniques to develop two equivalent models that have strong computational performance (and can be theoretically shown to be the best model for trees). Computational experiments on a test bed of 100 real-world graph instances (with up to approximately 465,000 nodes and 835,000 edges) attest to the efficacy of the best model, which finds solutions that are on average 0.4% from optimality and solves 80 of the 100 instances to optimality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
buno应助啦啦采纳,获得10
刚刚
Mike完成签到,获得积分10
刚刚
刚刚
顾矜应助chen采纳,获得10
1秒前
科研通AI5应助小王采纳,获得10
1秒前
GGBond完成签到,获得积分10
1秒前
孔雀翎发布了新的文献求助10
1秒前
寂寞的灵完成签到,获得积分10
2秒前
后知后觉发布了新的文献求助10
2秒前
百十余完成签到,获得积分10
2秒前
2秒前
2秒前
Zhaorf完成签到,获得积分10
3秒前
沉默紫槐完成签到,获得积分10
3秒前
深情安青应助易达采纳,获得10
3秒前
默默海露发布了新的文献求助10
5秒前
6秒前
flyfish完成签到,获得积分10
6秒前
36456657应助chen采纳,获得10
6秒前
每念至此完成签到,获得积分10
7秒前
大力黑米完成签到 ,获得积分10
8秒前
123发布了新的文献求助30
8秒前
搜集达人应助gaos采纳,获得10
8秒前
hengy发布了新的文献求助10
8秒前
杳鸢应助Xenia采纳,获得10
9秒前
kekekelili完成签到,获得积分10
10秒前
10秒前
zhonghbush发布了新的文献求助10
11秒前
reck发布了新的文献求助10
11秒前
11秒前
11秒前
kimcandy完成签到,获得积分10
11秒前
华仔应助任品贤采纳,获得10
12秒前
无花果应助急雪回风采纳,获得10
12秒前
14秒前
曾经的灵完成签到,获得积分20
14秒前
bkagyin应助小宇采纳,获得10
14秒前
许之北完成签到 ,获得积分10
14秒前
14秒前
船舵发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672