META: A City-Wide Taxi Repositioning Framework Based on Multi-Agent Reinforcement Learning

出租车 计算机科学 强化学习 人工智能 工程类 运输工程
作者
Chenxi Liu,Chaoxiong Chen,Chao Chen
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 13890-13895 被引量:18
标识
DOI:10.1109/tits.2021.3096226
摘要

The popularity of online ride-hailing platforms has made people travel smarter than ever before. But people still frequently encounter the dilemma of " taxi drivers hunt passengers and passengers search for unoccupied taxis ". Many studies try to reposition idle taxis to alleviate such issues by using reinforcement learning based methods, as they are capable of capturing future demand/supply dynamics. However, they either coordinate all city-wide taxis in a centralized manner or treat all taxis in a region homogeneously, resulting in inefficient or inaccurate learning performance. In this paper, we propose a multi-agent reinforcement learning based framework named META ( M ak E T axi A ct differently in each agent) to mitigate the disequilibrium of supply and demand via repositioning taxis at the city scale. We decompose it into two subproblems, i.e., taxi demand/supply determination and taxi dispatching strategy formulation. Two components are wisely built in META to address the gap collaboratively, in which each region is regarded as an agent and taxis inside the region can make two different actions. Extensive experiments demonstrate that META outperforms existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助大号安全蛋采纳,获得10
1秒前
只道寻常发布了新的文献求助10
1秒前
1秒前
小糖完成签到,获得积分20
1秒前
wlz完成签到,获得积分10
1秒前
2秒前
善学以致用应助wjhp007采纳,获得10
2秒前
苏苏发布了新的文献求助10
3秒前
SciGPT应助Dr.coco采纳,获得10
3秒前
3秒前
CodeCraft应助111采纳,获得10
3秒前
开朗安筠完成签到,获得积分20
3秒前
羊皮大哈发布了新的文献求助10
3秒前
玛丽完成签到,获得积分10
4秒前
搜集达人应助昂口3采纳,获得10
4秒前
zcx完成签到 ,获得积分10
5秒前
善学以致用应助zhaoa采纳,获得10
6秒前
jiling发布了新的文献求助20
6秒前
AAA完成签到,获得积分10
7秒前
逺航关注了科研通微信公众号
7秒前
明理的青寒完成签到 ,获得积分10
7秒前
7秒前
只道寻常完成签到,获得积分10
7秒前
乐乐应助张婷婷采纳,获得10
8秒前
9秒前
9秒前
莫壘壘发布了新的文献求助10
9秒前
10秒前
10秒前
烂漫梦容发布了新的文献求助10
10秒前
如影随形完成签到 ,获得积分10
11秒前
prayer完成签到,获得积分10
11秒前
11秒前
11秒前
能干的向真应助archaea采纳,获得10
12秒前
在水一方应助阿萨德采纳,获得10
12秒前
小牧鱼完成签到,获得积分10
12秒前
情怀应助涵泽采纳,获得10
12秒前
万能图书馆应助wzy采纳,获得20
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961589
求助须知:如何正确求助?哪些是违规求助? 3507917
关于积分的说明 11138698
捐赠科研通 3240341
什么是DOI,文献DOI怎么找? 1790929
邀请新用户注册赠送积分活动 872649
科研通“疑难数据库(出版商)”最低求助积分说明 803306