Joint multi-label learning and feature extraction for temporal link prediction

计算机科学 特征提取 人工智能 特征(语言学) 接头(建筑物) 模式识别(心理学) 链接(几何体) 机器学习 数据挖掘 工程类 计算机网络 语言学 哲学 建筑工程
作者
Xiaoke Ma,Shiyin Tan,Xianghua Xie,Xiaoxiong Zhong,Jingjing Deng
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:121: 108216-108216 被引量:29
标识
DOI:10.1016/j.patcog.2021.108216
摘要

Networks derived from various disciplinary of sociality and nature are dynamic and incomplete, and temporal link prediction has wide applications in recommendation system and data mining system, etc. The current algorithms first obtain features by exploiting the topological or latent structure of networks, and then predict temporal links based on the obtained features. These algorithms are criticized by the separation of feature extraction and link prediction, which fails to fully characterize the dynamics of networks, resulting in undesirable performance. To overcome this problem, we propose a novel algorithm by joint multi-label learning and feature extraction (called MLjFE), where temporal link prediction and feature extraction are integrated into an overall objective function. The main advantage of MLjFE is that the features and parameter matrix for temporal link prediction are simultaneously learned during optimization procedure, which is more precise to capture dynamics of networks, improving the performance of algorithms. The experimental results on a number of artificial and real-world temporal networks demonstrate that the proposed algorithm significantly outperforms state-of-the-art methods, showing joint learning with feature extraction and temporal link prediction is promising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是小小李哇完成签到 ,获得积分10
2秒前
浮游应助余佘采纳,获得10
3秒前
西蓝花战士完成签到,获得积分10
6秒前
7秒前
8秒前
勤奋的灯完成签到,获得积分10
8秒前
邸增楼完成签到 ,获得积分10
9秒前
lynn完成签到,获得积分10
9秒前
奎玖关注了科研通微信公众号
10秒前
11秒前
sun关注了科研通微信公众号
11秒前
water完成签到,获得积分10
11秒前
11秒前
徐笑松发布了新的文献求助10
12秒前
niuniu完成签到 ,获得积分10
13秒前
14秒前
xiaoma完成签到,获得积分20
14秒前
14秒前
勤奋的灯发布了新的文献求助10
15秒前
田超发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
lynn221204发布了新的文献求助10
17秒前
雷家发布了新的文献求助10
18秒前
jing发布了新的文献求助10
19秒前
20秒前
ych发布了新的文献求助10
20秒前
小合完成签到,获得积分10
22秒前
平淡雅阳完成签到,获得积分10
24秒前
hyxu678发布了新的文献求助10
24秒前
24秒前
科研通AI6应助清如采纳,获得10
24秒前
早日毕业完成签到,获得积分10
24秒前
25秒前
少女徐必成完成签到 ,获得积分10
25秒前
浮游应助余佘采纳,获得10
27秒前
sun发布了新的文献求助10
28秒前
坚强胡萝卜完成签到,获得积分10
28秒前
ava完成签到,获得积分10
29秒前
学茶小白完成签到,获得积分10
29秒前
斯文败类应助雷家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4573818
求助须知:如何正确求助?哪些是违规求助? 3994068
关于积分的说明 12364512
捐赠科研通 3667269
什么是DOI,文献DOI怎么找? 2021183
邀请新用户注册赠送积分活动 1055282
科研通“疑难数据库(出版商)”最低求助积分说明 942694