Joint multi-label learning and feature extraction for temporal link prediction

计算机科学 特征提取 人工智能 特征(语言学) 接头(建筑物) 模式识别(心理学) 链接(几何体) 机器学习 数据挖掘 工程类 计算机网络 语言学 哲学 建筑工程
作者
Xiaoke Ma,Shiyin Tan,Xianghua Xie,Xiaoxiong Zhong,Jingjing Deng
出处
期刊:Pattern Recognition [Elsevier]
卷期号:121: 108216-108216 被引量:29
标识
DOI:10.1016/j.patcog.2021.108216
摘要

Networks derived from various disciplinary of sociality and nature are dynamic and incomplete, and temporal link prediction has wide applications in recommendation system and data mining system, etc. The current algorithms first obtain features by exploiting the topological or latent structure of networks, and then predict temporal links based on the obtained features. These algorithms are criticized by the separation of feature extraction and link prediction, which fails to fully characterize the dynamics of networks, resulting in undesirable performance. To overcome this problem, we propose a novel algorithm by joint multi-label learning and feature extraction (called MLjFE), where temporal link prediction and feature extraction are integrated into an overall objective function. The main advantage of MLjFE is that the features and parameter matrix for temporal link prediction are simultaneously learned during optimization procedure, which is more precise to capture dynamics of networks, improving the performance of algorithms. The experimental results on a number of artificial and real-world temporal networks demonstrate that the proposed algorithm significantly outperforms state-of-the-art methods, showing joint learning with feature extraction and temporal link prediction is promising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
呆萌雪晴发布了新的文献求助10
刚刚
老天师一巴掌完成签到 ,获得积分10
1秒前
2秒前
dyf完成签到,获得积分10
2秒前
2秒前
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得30
2秒前
快乐二方完成签到 ,获得积分10
3秒前
wy.he应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
111完成签到,获得积分10
3秒前
3秒前
细心不二发布了新的文献求助10
4秒前
4秒前
crazy发布了新的文献求助20
4秒前
友好靖巧关注了科研通微信公众号
4秒前
5秒前
6秒前
哔噗哔噗发布了新的文献求助10
7秒前
7秒前
ableyy发布了新的文献求助10
8秒前
wqx完成签到 ,获得积分10
8秒前
lookahead完成签到,获得积分10
9秒前
10秒前
花开富贵完成签到,获得积分10
11秒前
Awikl完成签到,获得积分10
11秒前
12秒前
13秒前
李健应助Moving_Dr采纳,获得10
13秒前
illiterate完成签到,获得积分10
13秒前
Riggle G发布了新的文献求助10
13秒前
sandse7en完成签到 ,获得积分10
13秒前
丘比特应助jiahao采纳,获得10
13秒前
CipherSage应助细心不二采纳,获得10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304504
求助须知:如何正确求助?哪些是违规求助? 2938464
关于积分的说明 8488809
捐赠科研通 2612923
什么是DOI,文献DOI怎么找? 1427023
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647385