Using DeepGCN to identify the autism spectrum disorder from multi-site resting-state data

计算机科学 自闭症谱系障碍 平滑的 图形 模式识别(心理学) 支持向量机 模态(人机交互) 自闭症 人工智能 卷积神经网络 机器学习 心理学 精神科 理论计算机科学 计算机视觉
作者
Menglin Cao,Ming–Hsuan Yang,Chi Qin,Xiaofei Zhu,Yanni Chen,Jue Wang,Tian Liu
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:70: 103015-103015 被引量:83
标识
DOI:10.1016/j.bspc.2021.103015
摘要

It is challenging to discriminate Autism spectrum disorder (ASD) from a highly heterogeneous database, because there is a great deal of uncontrollable variability in the data from different sites. The enormous success of graph convolutional neural networks (GCNs) in disease prediction based on multi-site data has sparked recent interest in applying GCNs in diagnosis of ASD. However, the current research results are all based on shallow GCNs. The main objective of this research was to improve the classification results by using DeepGCN. We constructed a deep ASD diagnosing framework based on 16-layer GCN. And ResNet units and DropEdge strategy were integrated into the DeepGCN model to avoid the vanishing gradient, over-fitting and over-smoothing. We combined the scale information with neuroimaging to form a graph structure based on the ABIDE dataset I, which contains a total of 871 subjects from 17 sites. We compared the DeepGCN results with well-established models based on the same subjects. The mean accuracy of our classification algorithm is 73.7% for classifying ASD versus normal controls (GCN: 70.4%, SVM-l2: 66.8%, Metric Learning: 62.9%). We introduce a new perspective for studying the biological markers of early diagnosis of ASD based on multi-site and multi-modality data. Meanwhile, it can be easily applied to various mental illnesses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
标致醉波应助科研通管家采纳,获得30
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
1秒前
TTiger007发布了新的文献求助10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
jjj应助科研通管家采纳,获得20
1秒前
1秒前
1秒前
1秒前
李健应助科研通管家采纳,获得10
1秒前
Cu完成签到,获得积分10
3秒前
淡然的落雁完成签到,获得积分20
4秒前
所所应助小小超采纳,获得10
4秒前
郭宇完成签到 ,获得积分10
4秒前
5秒前
6秒前
李某人完成签到,获得积分10
6秒前
wink发布了新的文献求助10
6秒前
完美世界应助研友_GZ3EbL采纳,获得30
6秒前
扎心应助A1234567采纳,获得10
7秒前
9秒前
Master发布了新的文献求助500
9秒前
天天快乐应助fffffffq采纳,获得10
9秒前
htt应助benben采纳,获得10
10秒前
连安阳完成签到,获得积分10
10秒前
虞紫山完成签到,获得积分10
11秒前
wwww完成签到 ,获得积分10
11秒前
书生完成签到,获得积分10
11秒前
12秒前
14秒前
直率的宛海完成签到,获得积分10
15秒前
Hello应助julia采纳,获得10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962670
求助须知:如何正确求助?哪些是违规求助? 3508680
关于积分的说明 11142146
捐赠科研通 3241403
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872935
科研通“疑难数据库(出版商)”最低求助积分说明 803517