Using DeepGCN to identify the autism spectrum disorder from multi-site resting-state data

计算机科学 自闭症谱系障碍 平滑的 图形 模式识别(心理学) 支持向量机 模态(人机交互) 自闭症 人工智能 卷积神经网络 机器学习 心理学 精神科 计算机视觉 理论计算机科学
作者
Menglin Cao,Ming–Hsuan Yang,Chi Qin,Xiaofei Zhu,Yanni Chen,Jue Wang,Tian Liu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:70: 103015-103015 被引量:83
标识
DOI:10.1016/j.bspc.2021.103015
摘要

It is challenging to discriminate Autism spectrum disorder (ASD) from a highly heterogeneous database, because there is a great deal of uncontrollable variability in the data from different sites. The enormous success of graph convolutional neural networks (GCNs) in disease prediction based on multi-site data has sparked recent interest in applying GCNs in diagnosis of ASD. However, the current research results are all based on shallow GCNs. The main objective of this research was to improve the classification results by using DeepGCN. We constructed a deep ASD diagnosing framework based on 16-layer GCN. And ResNet units and DropEdge strategy were integrated into the DeepGCN model to avoid the vanishing gradient, over-fitting and over-smoothing. We combined the scale information with neuroimaging to form a graph structure based on the ABIDE dataset I, which contains a total of 871 subjects from 17 sites. We compared the DeepGCN results with well-established models based on the same subjects. The mean accuracy of our classification algorithm is 73.7% for classifying ASD versus normal controls (GCN: 70.4%, SVM-l2: 66.8%, Metric Learning: 62.9%). We introduce a new perspective for studying the biological markers of early diagnosis of ASD based on multi-site and multi-modality data. Meanwhile, it can be easily applied to various mental illnesses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Betty完成签到,获得积分10
刚刚
Lucas应助Sober采纳,获得10
1秒前
1秒前
香蕉觅云应助鱼儿采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
脑洞疼应助lang采纳,获得10
3秒前
汉堡包应助HjY采纳,获得10
3秒前
3秒前
yann发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
陈均涛完成签到,获得积分20
4秒前
初雪应助玛卡巴卡采纳,获得10
5秒前
初雪应助玛卡巴卡采纳,获得10
5秒前
5秒前
初雪应助玛卡巴卡采纳,获得10
5秒前
初雪应助玛卡巴卡采纳,获得10
5秒前
初雪应助玛卡巴卡采纳,获得10
5秒前
初雪应助玛卡巴卡采纳,获得10
5秒前
初雪应助玛卡巴卡采纳,获得10
5秒前
初雪应助玛卡巴卡采纳,获得10
5秒前
5秒前
6秒前
6秒前
太叔丹翠完成签到 ,获得积分0
6秒前
Betty发布了新的文献求助30
6秒前
ma121发布了新的文献求助30
6秒前
无聊的黎发布了新的文献求助10
6秒前
7秒前
Mark应助fanqiaqia采纳,获得10
7秒前
小蘑菇应助chx123采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768867
求助须知:如何正确求助?哪些是违规求助? 5577225
关于积分的说明 15419796
捐赠科研通 4902658
什么是DOI,文献DOI怎么找? 2637844
邀请新用户注册赠送积分活动 1585759
关于科研通互助平台的介绍 1540922