Using DeepGCN to identify the autism spectrum disorder from multi-site resting-state data

计算机科学 自闭症谱系障碍 平滑的 图形 模式识别(心理学) 支持向量机 模态(人机交互) 自闭症 人工智能 卷积神经网络 机器学习 心理学 精神科 理论计算机科学 计算机视觉
作者
Menglin Cao,Ming–Hsuan Yang,Chi Qin,Xiaofei Zhu,Yanni Chen,Jue Wang,Tian Liu
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:70: 103015-103015 被引量:83
标识
DOI:10.1016/j.bspc.2021.103015
摘要

It is challenging to discriminate Autism spectrum disorder (ASD) from a highly heterogeneous database, because there is a great deal of uncontrollable variability in the data from different sites. The enormous success of graph convolutional neural networks (GCNs) in disease prediction based on multi-site data has sparked recent interest in applying GCNs in diagnosis of ASD. However, the current research results are all based on shallow GCNs. The main objective of this research was to improve the classification results by using DeepGCN. We constructed a deep ASD diagnosing framework based on 16-layer GCN. And ResNet units and DropEdge strategy were integrated into the DeepGCN model to avoid the vanishing gradient, over-fitting and over-smoothing. We combined the scale information with neuroimaging to form a graph structure based on the ABIDE dataset I, which contains a total of 871 subjects from 17 sites. We compared the DeepGCN results with well-established models based on the same subjects. The mean accuracy of our classification algorithm is 73.7% for classifying ASD versus normal controls (GCN: 70.4%, SVM-l2: 66.8%, Metric Learning: 62.9%). We introduce a new perspective for studying the biological markers of early diagnosis of ASD based on multi-site and multi-modality data. Meanwhile, it can be easily applied to various mental illnesses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈情发布了新的文献求助30
刚刚
量子星尘发布了新的文献求助10
1秒前
谢戴竹发布了新的文献求助30
1秒前
dxxcshin完成签到,获得积分10
1秒前
1秒前
1秒前
安详的冰蝶完成签到,获得积分10
2秒前
白晨完成签到,获得积分20
2秒前
2秒前
受伤灵薇完成签到,获得积分10
3秒前
阿怪完成签到,获得积分10
5秒前
5秒前
李健的小迷弟应助btmy16采纳,获得10
5秒前
Singularity应助ZHOUZHOU采纳,获得10
6秒前
6秒前
6秒前
吉吉完成签到 ,获得积分10
7秒前
SciGPT应助lili采纳,获得10
7秒前
8秒前
8秒前
river_121完成签到,获得积分10
8秒前
relevance完成签到,获得积分10
9秒前
思源应助白晨采纳,获得10
9秒前
骆123关注了科研通微信公众号
10秒前
10秒前
Owen应助dwj采纳,获得10
10秒前
所所应助会飞的猪采纳,获得10
11秒前
大知闲闲发布了新的文献求助10
12秒前
xiaowan完成签到,获得积分20
12秒前
小伍发布了新的文献求助10
13秒前
CC完成签到 ,获得积分10
14秒前
mouhao1发布了新的文献求助10
15秒前
Sega完成签到,获得积分10
15秒前
谢戴竹完成签到,获得积分20
15秒前
陈情完成签到,获得积分20
16秒前
量子星尘发布了新的文献求助150
17秒前
浮游应助ZHOUZHOU采纳,获得10
17秒前
18秒前
小二郎应助认真的不斜采纳,获得10
18秒前
熊11发布了新的文献求助10
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143039
求助须知:如何正确求助?哪些是违规求助? 4341079
关于积分的说明 13519541
捐赠科研通 4181353
什么是DOI,文献DOI怎么找? 2292877
邀请新用户注册赠送积分活动 1293512
关于科研通互助平台的介绍 1236099