材料科学
自愈水凝胶
明胶
乙烯醇
软质材料
聚合物
人工肌肉
纤维素
天然聚合物
软机器人
仿生学
合成聚合物
材料设计
细菌纤维素
纳米技术
仿生材料
复合材料
机械强度
天然材料
高分子科学
化学工程
计算机科学
高分子化学
人工智能
机器人
有机化学
化学
执行机构
工程类
作者
Xiangyu Liang,Guangda Chen,Shaoting Lin,Jiajun Zhang,Liu Wang,Pei Zhang,Zeyu Wang,Zongbao Wang,Yang Lan,Qi Ge,Ji Liu
标识
DOI:10.1002/adma.202102011
摘要
Abstract Nature builds biological materials from limited ingredients, however, with unparalleled mechanical performances compared to artificial materials, by harnessing inherent structures across multi‐length‐scales. In contrast, synthetic material design overwhelmingly focuses on developing new compounds, and fails to reproduce the mechanical properties of natural counterparts, such as fatigue resistance. Here, a simple yet general strategy to engineer conventional hydrogels with a more than 100‐fold increase in fatigue thresholds is reported. This strategy is proven to be universally applicable to various species of hydrogel materials, including polysaccharides (i.e., alginate, cellulose), proteins (i.e., gelatin), synthetic polymers (i.e., poly(vinyl alcohol)s), as well as corresponding polymer composites. These fatigue‐resistant hydrogels exhibit a record‐high fatigue threshold over most synthetic soft materials, making them low‐cost, high‐performance, and durable alternatives to soft materials used in those circumstances including robotics, artificial muscles, etc.
科研通智能强力驱动
Strongly Powered by AbleSci AI