Development of Subsurface Geological Cross-Section from Limited Site-Specific Boreholes and Prior Geological Knowledge Using Iterative Convolution XGBoost

钻孔 地质学 插值(计算机图形学) 参数统计 章节(排版) 水文地质学 采矿工程 岩土工程 计算机科学 人工智能 图像(数学) 数学 统计 操作系统
作者
Chao Shi,Yu Wang
出处
期刊:Journal of Geotechnical and Geoenvironmental Engineering [American Society of Civil Engineers]
卷期号:147 (9) 被引量:86
标识
DOI:10.1061/(asce)gt.1943-5606.0002583
摘要

The delineation of vertical geological cross-sections is an essential task in geotechnical site characterization and has a profound impact on subsequent geotechnical designs and analyses. It is a long-lasting challenge, particularly for complex geological settings, to properly produce a subsurface geological cross-section from limited boreholes that are usually encountered in engineering practice. Emerging machine learning methods, such as the convolutional neural network (CNN), provide a fresh perspective of this challenge and effective alternatives for exploiting the complex stratigraphic relationships between different soil deposits. In this study, a novel iterative convolution eXtreme Gradient Boosting model (IC-XGBoost) is proposed. This model interpolates a subsurface geological cross-section from limited site-specific boreholes and a training geological cross-section obtained from previous projects with similar geological settings. This direct application of previous geological cross-sections for training is based on the assumption of similar local spatial connectivity or stratigraphic relationships between soils in areas with similar geological settings. The proposed method can learn stratigraphic patterns from a training image in an automatic manner. In addition, the proposed method is purely data-driven and does not require the specification of any parametric function form. The model performance is illustrated using both a simulated example and real data from a tunnel project in Australia. The proposed method not only infers the most probable geological cross-section but also quantifies the associated interpolation uncertainty from multiple realizations. The effect of the borehole number on the interpolation performance is also explicitly investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笔芯完成签到,获得积分10
刚刚
看文献完成签到,获得积分0
2秒前
爱与感谢完成签到 ,获得积分10
4秒前
华仔应助大橙子采纳,获得10
5秒前
小帅完成签到,获得积分10
5秒前
man完成签到 ,获得积分10
6秒前
biofresh完成签到,获得积分10
8秒前
平凡完成签到,获得积分10
12秒前
13秒前
哈利波特完成签到,获得积分10
16秒前
菓小柒完成签到 ,获得积分10
16秒前
basil完成签到,获得积分10
17秒前
大橙子发布了新的文献求助10
17秒前
mammer应助超帅无色采纳,获得10
18秒前
helloworld完成签到,获得积分10
19秒前
海洋完成签到,获得积分10
19秒前
Hina完成签到,获得积分10
20秒前
ZH完成签到,获得积分10
23秒前
yyds完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
26秒前
27秒前
唯梦完成签到 ,获得积分10
27秒前
詹姆斯哈登完成签到,获得积分10
30秒前
李健应助名字不好起采纳,获得10
32秒前
万历完成签到,获得积分10
32秒前
32秒前
林卷卷完成签到,获得积分10
33秒前
大葱鸭发布了新的文献求助10
35秒前
36秒前
李健应助南山无梅落采纳,获得10
36秒前
40秒前
赘婿应助大橙子采纳,获得10
42秒前
49秒前
我是大学霸完成签到,获得积分10
50秒前
随风完成签到,获得积分0
50秒前
yi完成签到 ,获得积分10
51秒前
lin完成签到,获得积分10
52秒前
huahua完成签到 ,获得积分10
52秒前
大橙子发布了新的文献求助10
55秒前
小黑完成签到,获得积分10
58秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022