Development of Subsurface Geological Cross-Section from Limited Site-Specific Boreholes and Prior Geological Knowledge Using Iterative Convolution XGBoost

钻孔 地质学 插值(计算机图形学) 参数统计 章节(排版) 水文地质学 采矿工程 岩土工程 计算机科学 人工智能 图像(数学) 数学 统计 操作系统
作者
Chao Shi,Yu Wang
出处
期刊:Journal of Geotechnical and Geoenvironmental Engineering [American Society of Civil Engineers]
卷期号:147 (9) 被引量:122
标识
DOI:10.1061/(asce)gt.1943-5606.0002583
摘要

The delineation of vertical geological cross-sections is an essential task in geotechnical site characterization and has a profound impact on subsequent geotechnical designs and analyses. It is a long-lasting challenge, particularly for complex geological settings, to properly produce a subsurface geological cross-section from limited boreholes that are usually encountered in engineering practice. Emerging machine learning methods, such as the convolutional neural network (CNN), provide a fresh perspective of this challenge and effective alternatives for exploiting the complex stratigraphic relationships between different soil deposits. In this study, a novel iterative convolution eXtreme Gradient Boosting model (IC-XGBoost) is proposed. This model interpolates a subsurface geological cross-section from limited site-specific boreholes and a training geological cross-section obtained from previous projects with similar geological settings. This direct application of previous geological cross-sections for training is based on the assumption of similar local spatial connectivity or stratigraphic relationships between soils in areas with similar geological settings. The proposed method can learn stratigraphic patterns from a training image in an automatic manner. In addition, the proposed method is purely data-driven and does not require the specification of any parametric function form. The model performance is illustrated using both a simulated example and real data from a tunnel project in Australia. The proposed method not only infers the most probable geological cross-section but also quantifies the associated interpolation uncertainty from multiple realizations. The effect of the borehole number on the interpolation performance is also explicitly investigated. © 2021 American Society of Civil Engineers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jopaul完成签到,获得积分10
刚刚
LX1005完成签到,获得积分10
1秒前
yu完成签到,获得积分10
1秒前
Orange应助yao chen采纳,获得10
1秒前
科研通AI6应助嘉嘉琦采纳,获得10
1秒前
勤恳的若风完成签到,获得积分10
2秒前
李家酥铺完成签到,获得积分20
2秒前
远远发布了新的文献求助10
2秒前
kefan_123完成签到,获得积分10
2秒前
2秒前
王思鲁完成签到,获得积分10
3秒前
Lin完成签到,获得积分10
3秒前
胖胖桑完成签到,获得积分20
3秒前
汉堡包应助lvwubin采纳,获得10
4秒前
是亲爱的小王完成签到,获得积分10
4秒前
5秒前
5秒前
虚影完成签到,获得积分10
5秒前
赵若琪发布了新的文献求助30
5秒前
十叶月完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
轻松一曲应助kndr10采纳,获得10
7秒前
1234发布了新的文献求助10
7秒前
情怀应助lanzinuo采纳,获得10
7秒前
llllll完成签到,获得积分10
8秒前
8秒前
9秒前
烟花应助海盐气泡水采纳,获得10
9秒前
9秒前
隐形曼青应助ww采纳,获得10
9秒前
星辰大海应助xh采纳,获得10
9秒前
Orange应助小蘑菇采纳,获得10
10秒前
sycsyc完成签到,获得积分10
10秒前
血小板发布了新的文献求助10
10秒前
激动的半梦完成签到,获得积分10
10秒前
Fiona000001完成签到,获得积分10
11秒前
大写的笨发布了新的文献求助10
11秒前
大块完成签到 ,获得积分10
12秒前
zhangq发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629839
求助须知:如何正确求助?哪些是违规求助? 4720715
关于积分的说明 14970892
捐赠科研通 4787804
什么是DOI,文献DOI怎么找? 2556517
邀请新用户注册赠送积分活动 1517691
关于科研通互助平台的介绍 1478271