Development of Subsurface Geological Cross-Section from Limited Site-Specific Boreholes and Prior Geological Knowledge Using Iterative Convolution XGBoost

钻孔 地质学 插值(计算机图形学) 参数统计 章节(排版) 水文地质学 采矿工程 岩土工程 计算机科学 人工智能 图像(数学) 数学 统计 操作系统
作者
Chao Shi,Yu Wang
出处
期刊:Journal of Geotechnical and Geoenvironmental Engineering [American Society of Civil Engineers]
卷期号:147 (9) 被引量:86
标识
DOI:10.1061/(asce)gt.1943-5606.0002583
摘要

The delineation of vertical geological cross-sections is an essential task in geotechnical site characterization and has a profound impact on subsequent geotechnical designs and analyses. It is a long-lasting challenge, particularly for complex geological settings, to properly produce a subsurface geological cross-section from limited boreholes that are usually encountered in engineering practice. Emerging machine learning methods, such as the convolutional neural network (CNN), provide a fresh perspective of this challenge and effective alternatives for exploiting the complex stratigraphic relationships between different soil deposits. In this study, a novel iterative convolution eXtreme Gradient Boosting model (IC-XGBoost) is proposed. This model interpolates a subsurface geological cross-section from limited site-specific boreholes and a training geological cross-section obtained from previous projects with similar geological settings. This direct application of previous geological cross-sections for training is based on the assumption of similar local spatial connectivity or stratigraphic relationships between soils in areas with similar geological settings. The proposed method can learn stratigraphic patterns from a training image in an automatic manner. In addition, the proposed method is purely data-driven and does not require the specification of any parametric function form. The model performance is illustrated using both a simulated example and real data from a tunnel project in Australia. The proposed method not only infers the most probable geological cross-section but also quantifies the associated interpolation uncertainty from multiple realizations. The effect of the borehole number on the interpolation performance is also explicitly investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮的半山完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
slx发布了新的文献求助10
3秒前
Akim应助比利时光采纳,获得10
3秒前
思源应助waitingfor采纳,获得10
4秒前
4秒前
DueR完成签到,获得积分10
5秒前
清爽乐菱应助失眠的夜梦采纳,获得30
5秒前
磊磊完成签到,获得积分10
6秒前
Chelry发布了新的文献求助30
6秒前
闾丘剑封发布了新的文献求助10
6秒前
Chief完成签到,获得积分0
7秒前
mk91发布了新的文献求助10
7秒前
镇江市第一人民医院第一深情完成签到,获得积分10
8秒前
xiaoyuanbao1988完成签到,获得积分10
8秒前
qin希望应助不回首采纳,获得10
9秒前
上官若男应助不回首采纳,获得10
9秒前
科研通AI2S应助不回首采纳,获得10
9秒前
Jasper应助不回首采纳,获得10
9秒前
科研通AI5应助不回首采纳,获得10
9秒前
JamesPei应助不回首采纳,获得10
9秒前
9秒前
Lucy完成签到 ,获得积分10
9秒前
12秒前
学术蝗虫发布了新的文献求助10
13秒前
14秒前
bkagyin应助陈曦采纳,获得10
15秒前
Rondab应助幸福大白采纳,获得30
15秒前
Rondab应助幸福大白采纳,获得30
15秒前
16秒前
酷波er应助高兴松鼠采纳,获得10
16秒前
星辰大海应助HY采纳,获得10
16秒前
zhuoak完成签到,获得积分10
16秒前
haha发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
mk91完成签到,获得积分10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989510
求助须知:如何正确求助?哪些是违规求助? 3531756
关于积分的说明 11254536
捐赠科研通 3270255
什么是DOI,文献DOI怎么找? 1804947
邀请新用户注册赠送积分活动 882113
科研通“疑难数据库(出版商)”最低求助积分说明 809176