Development of Subsurface Geological Cross-Section from Limited Site-Specific Boreholes and Prior Geological Knowledge Using Iterative Convolution XGBoost

钻孔 地质学 插值(计算机图形学) 参数统计 章节(排版) 水文地质学 采矿工程 岩土工程 计算机科学 人工智能 图像(数学) 数学 统计 操作系统
作者
Chao Shi,Yu Wang
出处
期刊:Journal of Geotechnical and Geoenvironmental Engineering [American Society of Civil Engineers]
卷期号:147 (9) 被引量:86
标识
DOI:10.1061/(asce)gt.1943-5606.0002583
摘要

The delineation of vertical geological cross-sections is an essential task in geotechnical site characterization and has a profound impact on subsequent geotechnical designs and analyses. It is a long-lasting challenge, particularly for complex geological settings, to properly produce a subsurface geological cross-section from limited boreholes that are usually encountered in engineering practice. Emerging machine learning methods, such as the convolutional neural network (CNN), provide a fresh perspective of this challenge and effective alternatives for exploiting the complex stratigraphic relationships between different soil deposits. In this study, a novel iterative convolution eXtreme Gradient Boosting model (IC-XGBoost) is proposed. This model interpolates a subsurface geological cross-section from limited site-specific boreholes and a training geological cross-section obtained from previous projects with similar geological settings. This direct application of previous geological cross-sections for training is based on the assumption of similar local spatial connectivity or stratigraphic relationships between soils in areas with similar geological settings. The proposed method can learn stratigraphic patterns from a training image in an automatic manner. In addition, the proposed method is purely data-driven and does not require the specification of any parametric function form. The model performance is illustrated using both a simulated example and real data from a tunnel project in Australia. The proposed method not only infers the most probable geological cross-section but also quantifies the associated interpolation uncertainty from multiple realizations. The effect of the borehole number on the interpolation performance is also explicitly investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bluer发布了新的文献求助10
刚刚
1秒前
1秒前
科研通AI5应助无悔呀采纳,获得10
1秒前
毛毛虫完成签到,获得积分10
1秒前
快乐小文完成签到,获得积分10
1秒前
Nooooo发布了新的文献求助10
2秒前
2秒前
贰鸟应助木之以南采纳,获得10
2秒前
无不破哉完成签到,获得积分20
2秒前
Dai WJ发布了新的文献求助10
3秒前
黄大师完成签到 ,获得积分10
3秒前
愤怒的河虾完成签到,获得积分10
3秒前
所所应助XIXI采纳,获得10
3秒前
麻麻发布了新的文献求助10
4秒前
经法发布了新的文献求助10
4秒前
MailkMonk完成签到,获得积分20
4秒前
cici完成签到,获得积分10
5秒前
快乐小文发布了新的文献求助30
5秒前
惜寒完成签到 ,获得积分10
5秒前
5秒前
Grayball应助无奈梦岚采纳,获得10
5秒前
此生不换完成签到 ,获得积分10
6秒前
寻舟者完成签到,获得积分10
7秒前
7秒前
7秒前
橘子屿布丁完成签到,获得积分10
8秒前
8秒前
Zhy完成签到,获得积分10
9秒前
bzy发布了新的文献求助10
9秒前
9秒前
风趣秋白完成签到,获得积分10
9秒前
情怀应助tanmeng77采纳,获得10
9秒前
若空完成签到 ,获得积分10
10秒前
典雅又夏发布了新的文献求助10
10秒前
XIXI完成签到,获得积分10
10秒前
11秒前
夏夏发布了新的文献求助10
11秒前
666完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678