A novel graph attention model for predicting frequencies of drug–side effects from multi-view data

计算机科学 图形 水准点(测量) 机器学习 注意力网络 人工智能 人工神经网络 特征(语言学) 数据挖掘 模式识别(心理学) 理论计算机科学 大地测量学 语言学 哲学 地理
作者
Haochen Zhao,Kai Zheng,Yaohang Li,Jianxin Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:28
标识
DOI:10.1093/bib/bbab239
摘要

Identifying the frequencies of the drug-side effects is a very important issue in pharmacological studies and drug risk-benefit. However, designing clinical trials to determine the frequencies is usually time consuming and expensive, and most existing methods can only predict the drug-side effect existence or associations, not their frequencies. Inspired by the recent progress of graph neural networks in the recommended system, we develop a novel prediction model for drug-side effect frequencies, using a graph attention network to integrate three different types of features, including the similarity information, known drug-side effect frequency information and word embeddings. In comparison, the few available studies focusing on frequency prediction use only the known drug-side effect frequency scores. One novel approach used in this work first decomposes the feature types in drug-side effect graph to extract different view representation vectors based on three different type features, and then recombines these latent view vectors automatically to obtain unified embeddings for prediction. The proposed method demonstrates high effectiveness in 10-fold cross-validation. The computational results show that the proposed method achieves the best performance in the benchmark dataset, outperforming the state-of-the-art matrix decomposition model. In addition, some ablation experiments and visual analyses are also supplied to illustrate the usefulness of our method for the prediction of the drug-side effect frequencies. The codes of MGPred are available at https://github.com/zhc940702/MGPred and https://zenodo.org/record/4449613.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助淡然的毒娘采纳,获得10
刚刚
wzh完成签到 ,获得积分10
1秒前
深情安青应助围城烟火采纳,获得100
1秒前
hlf发布了新的文献求助10
1秒前
2秒前
我是老大应助李大了采纳,获得10
3秒前
3秒前
可可的好先生完成签到,获得积分10
3秒前
4秒前
月yue完成签到,获得积分10
4秒前
4秒前
midokaori发布了新的文献求助10
4秒前
读书妖精文亭逐完成签到,获得积分10
5秒前
觅海完成签到 ,获得积分10
5秒前
5秒前
wanci应助科研沸羊羊采纳,获得10
6秒前
所所应助my采纳,获得10
7秒前
zmmouc完成签到,获得积分10
7秒前
刚子完成签到,获得积分10
7秒前
bkagyin应助liuzengzhang666采纳,获得10
7秒前
晓湫发布了新的文献求助10
7秒前
丰富的不惜完成签到,获得积分10
8秒前
Sucht发布了新的文献求助30
8秒前
9秒前
蔚亭完成签到 ,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
liu完成签到 ,获得积分10
10秒前
传奇3应助xiaoloong采纳,获得10
10秒前
李Li发布了新的文献求助10
10秒前
澈千子发布了新的文献求助10
10秒前
11秒前
田様应助midokaori采纳,获得10
12秒前
吴彦祖完成签到,获得积分10
12秒前
逃不了发布了新的文献求助10
13秒前
13秒前
今后应助zxzb采纳,获得10
14秒前
Sucht完成签到,获得积分10
14秒前
果实发布了新的文献求助10
15秒前
SciGPT应助是小松啊采纳,获得10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960721
求助须知:如何正确求助?哪些是违规求助? 3506928
关于积分的说明 11132948
捐赠科研通 3239182
什么是DOI,文献DOI怎么找? 1790081
邀请新用户注册赠送积分活动 872130
科研通“疑难数据库(出版商)”最低求助积分说明 803128