A novel graph attention model for predicting frequencies of drug–side effects from multi-view data

计算机科学 图形 水准点(测量) 机器学习 注意力网络 人工智能 人工神经网络 特征(语言学) 数据挖掘 模式识别(心理学) 理论计算机科学 大地测量学 语言学 哲学 地理
作者
Haochen Zhao,Kai Zheng,Yaohang Li,Jianxin Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:28
标识
DOI:10.1093/bib/bbab239
摘要

Identifying the frequencies of the drug-side effects is a very important issue in pharmacological studies and drug risk-benefit. However, designing clinical trials to determine the frequencies is usually time consuming and expensive, and most existing methods can only predict the drug-side effect existence or associations, not their frequencies. Inspired by the recent progress of graph neural networks in the recommended system, we develop a novel prediction model for drug-side effect frequencies, using a graph attention network to integrate three different types of features, including the similarity information, known drug-side effect frequency information and word embeddings. In comparison, the few available studies focusing on frequency prediction use only the known drug-side effect frequency scores. One novel approach used in this work first decomposes the feature types in drug-side effect graph to extract different view representation vectors based on three different type features, and then recombines these latent view vectors automatically to obtain unified embeddings for prediction. The proposed method demonstrates high effectiveness in 10-fold cross-validation. The computational results show that the proposed method achieves the best performance in the benchmark dataset, outperforming the state-of-the-art matrix decomposition model. In addition, some ablation experiments and visual analyses are also supplied to illustrate the usefulness of our method for the prediction of the drug-side effect frequencies. The codes of MGPred are available at https://github.com/zhc940702/MGPred and https://zenodo.org/record/4449613.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
文艺月亮完成签到,获得积分10
刚刚
薯条完成签到 ,获得积分10
刚刚
1秒前
wangchong发布了新的文献求助10
1秒前
1秒前
1秒前
认真火车发布了新的文献求助10
2秒前
2秒前
3秒前
J_C_Van发布了新的文献求助10
3秒前
lvzhou发布了新的文献求助30
3秒前
4秒前
星辰大海应助徐hb采纳,获得10
4秒前
沉舟发布了新的文献求助10
4秒前
5秒前
如果发布了新的文献求助10
5秒前
5秒前
5秒前
jinyu发布了新的文献求助10
6秒前
刘玉梅完成签到,获得积分10
6秒前
屈先生完成签到,获得积分10
6秒前
6秒前
林子发布了新的文献求助10
6秒前
7秒前
大模型应助luckyhan采纳,获得10
7秒前
汪汪发布了新的文献求助10
7秒前
七七完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
奋斗成风发布了新的文献求助10
9秒前
十一完成签到,获得积分10
9秒前
Dreamy完成签到,获得积分10
9秒前
sidashu完成签到,获得积分10
9秒前
科研通AI2S应助蓉儿采纳,获得10
9秒前
10秒前
10秒前
10秒前
坦率灵槐发布了新的文献求助10
10秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5237952
求助须知:如何正确求助?哪些是违规求助? 4405573
关于积分的说明 13711175
捐赠科研通 4273871
什么是DOI,文献DOI怎么找? 2345256
邀请新用户注册赠送积分活动 1342382
关于科研通互助平台的介绍 1300263