A novel graph attention model for predicting frequencies of drug–side effects from multi-view data

计算机科学 图形 水准点(测量) 机器学习 注意力网络 人工智能 人工神经网络 特征(语言学) 数据挖掘 模式识别(心理学) 理论计算机科学 大地测量学 语言学 哲学 地理
作者
Haochen Zhao,Kai Zheng,Yaohang Li,Jianxin Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:28
标识
DOI:10.1093/bib/bbab239
摘要

Identifying the frequencies of the drug-side effects is a very important issue in pharmacological studies and drug risk-benefit. However, designing clinical trials to determine the frequencies is usually time consuming and expensive, and most existing methods can only predict the drug-side effect existence or associations, not their frequencies. Inspired by the recent progress of graph neural networks in the recommended system, we develop a novel prediction model for drug-side effect frequencies, using a graph attention network to integrate three different types of features, including the similarity information, known drug-side effect frequency information and word embeddings. In comparison, the few available studies focusing on frequency prediction use only the known drug-side effect frequency scores. One novel approach used in this work first decomposes the feature types in drug-side effect graph to extract different view representation vectors based on three different type features, and then recombines these latent view vectors automatically to obtain unified embeddings for prediction. The proposed method demonstrates high effectiveness in 10-fold cross-validation. The computational results show that the proposed method achieves the best performance in the benchmark dataset, outperforming the state-of-the-art matrix decomposition model. In addition, some ablation experiments and visual analyses are also supplied to illustrate the usefulness of our method for the prediction of the drug-side effect frequencies. The codes of MGPred are available at https://github.com/zhc940702/MGPred and https://zenodo.org/record/4449613.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
认真读文献应助小古采纳,获得10
2秒前
newyear发布了新的文献求助50
3秒前
易烊千玺发布了新的文献求助10
3秒前
pp1230发布了新的文献求助10
3秒前
蘸水发布了新的文献求助10
3秒前
Even9完成签到,获得积分10
3秒前
竹筏过海应助全世界采纳,获得30
5秒前
Ci发布了新的文献求助10
7秒前
hsy发布了新的文献求助10
8秒前
孜然炸鸡排完成签到 ,获得积分10
8秒前
8秒前
9秒前
蘸水完成签到,获得积分10
9秒前
ff发布了新的文献求助50
9秒前
万能图书馆应助易烊千玺采纳,获得10
9秒前
Yziii应助lovekobe采纳,获得10
9秒前
共享精神应助小李儿采纳,获得10
9秒前
9秒前
WM应助lovekobe采纳,获得10
9秒前
Maki发布了新的文献求助10
9秒前
超帅路灯应助lovekobe采纳,获得10
9秒前
天天快乐应助lovekobe采纳,获得10
9秒前
ZD应助lovekobe采纳,获得10
9秒前
Yziii应助lovekobe采纳,获得10
9秒前
Yziii应助lovekobe采纳,获得10
9秒前
尊敬雪萍完成签到,获得积分10
9秒前
10秒前
那么完成签到,获得积分10
12秒前
善学以致用应助Katsuya采纳,获得10
13秒前
火火完成签到 ,获得积分10
14秒前
14秒前
ured发布了新的文献求助10
14秒前
尊敬雪萍发布了新的文献求助10
14秒前
深情安青应助WHY采纳,获得10
16秒前
16秒前
myy完成签到,获得积分10
17秒前
17秒前
CodeCraft应助hsy采纳,获得10
17秒前
易烊千玺完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151603
求助须知:如何正确求助?哪些是违规求助? 2803074
关于积分的说明 7851668
捐赠科研通 2460423
什么是DOI,文献DOI怎么找? 1309767
科研通“疑难数据库(出版商)”最低求助积分说明 629025
版权声明 601760