Identification methodology of special behaviors for fish school based on spatial behavior characteristics

计算机科学 识别方案 特征(语言学) 鉴定(生物学) 人工智能 方案(数学) 分割 能量(信号处理) 模拟 计算机视觉 模式识别(心理学) 数学 统计 数据挖掘 生态学 数学分析 哲学 生物 渔业 语言学 度量(数据仓库)
作者
Xiaoning Yu,Yaqian Wang,Dong An,Yaoguang Wei
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:185: 106169-106169 被引量:37
标识
DOI:10.1016/j.compag.2021.106169
摘要

Abstract The identification of special behaviors for fish school is an effective approach to monitor fish welfare and improve the informatization level of aquaculture. In order to monitor and detect special behaviors of fish school, such as stress and feeding behavior, a scheme based on simulation feature point selection (SFPS) is proposed. In this scheme, feature points extraction and special behaviors identification are integrated seamlessly. In order to avoid the issues of poor stability and complex operation led by foreground segmentation, an image is divided into several sub-images with the help of sliding window. Feature points and velocities of sub-images are then obtained by the Harris corner detection and Lucas-Kanade optical flow. Moreover, a model coupled normal behavior characteristic matrix and the detection of special behaviors is designed to identify special behaviors of fish school. Furthermore, comparisons among SFPS, Single Gaussian Model (SGM) and the kinetic energy model are carried out. The results show that the scheme can effectively monitor the special behaviors of fish school, and the detection accuracy of feeding behavior can achieve to 96.02%. Comparing with SGM and the kinetic energy model, the accuracy of stress behavior and feeding behavior for SFPS scheme are improved by 13.25%, 4.21%, 30.24%, and 4.32% respectively. Also, the operation time is reduced by 98.73% without the foreground segmentation. The SFPS scheme proposed in this paper is not only conducive to the development of special behaviors identification technology for fish school, but also provides a feasible solution for the application of this technology in practical engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
nemo711发布了新的文献求助10
4秒前
chen应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
chen应助科研通管家采纳,获得10
4秒前
Candice应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Candice应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
雨霧雲完成签到,获得积分10
5秒前
养乐多完成签到 ,获得积分10
5秒前
小蘑菇应助可研小冲采纳,获得10
6秒前
没名字完成签到,获得积分10
6秒前
8秒前
刘金凤发布了新的文献求助10
8秒前
寇婧怡完成签到 ,获得积分10
8秒前
很菜的研究生完成签到,获得积分10
10秒前
小胡发布了新的文献求助10
10秒前
guo发布了新的文献求助10
10秒前
hmhu发布了新的文献求助10
12秒前
12秒前
zhangyanbo发布了新的文献求助10
12秒前
林123发布了新的文献求助10
12秒前
ITF完成签到 ,获得积分10
12秒前
13秒前
14秒前
15秒前
无足鸟完成签到,获得积分10
15秒前
17秒前
大吴克发布了新的文献求助10
19秒前
白白发布了新的文献求助10
19秒前
彭于晏应助guo采纳,获得10
21秒前
远方发布了新的文献求助10
23秒前
白白完成签到,获得积分20
25秒前
欣欣完成签到 ,获得积分10
26秒前
anan发布了新的文献求助10
26秒前
希言发布了新的文献求助10
26秒前
29秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3389529
求助须知:如何正确求助?哪些是违规求助? 3001541
关于积分的说明 8798876
捐赠科研通 2688245
什么是DOI,文献DOI怎么找? 1472461
科研通“疑难数据库(出版商)”最低求助积分说明 680947
邀请新用户注册赠送积分活动 673557