离子液体
粘度
极限学习机
巴(单位)
绝对偏差
热力学
相对标准差
航程(航空)
化学
算法
生物系统
材料科学
人工神经网络
计算机科学
数学
机器学习
物理
色谱法
有机化学
统计
气象学
复合材料
催化作用
检出限
生物
作者
Xuejing Kang,Zhijun Zhao,Jianguo Qian,Raja Muhammad Afzal
标识
DOI:10.1021/acs.iecr.7b02722
摘要
Predicting the viscosity of ionic liquids (ILs) is crucial for their applications in chemical and related industries. In this study, a large data set of experimental viscosity data of ILs with a wide range of viscosity (7.83–142 000 cP), pressure (1–3000 bar), and temperature (258.15–395.32 K) are employed to build predictive models. The structures of cations and anions for 89 ILs are optimized, and the Sσ-profiles descriptors are calculated using the quantum chemistry method.Two new models are developed by using extreme learning machine (ELM) intelligence algorithm with the temperature, pressure, and a number of Sσ-profiles descriptors as input parameters. The coefficient of determination (R2) and average absolute relative deviation (AARD %) of the total sets of the two predictive models are 0.982, 2.21% and 0.951, 4.10%, respectively. The results show that the two ELM models are reliable for predicting the viscosity of ILs.
科研通智能强力驱动
Strongly Powered by AbleSci AI