Potential of lidar sensors for the detection of UAVs

激光雷达 目标检测 遥感 计算机视觉 雷达 人工智能 计算机科学 雷达跟踪器 跟踪(教育) 测距 模式识别(心理学) 地理 电信 心理学 教育学
作者
Marcus Hammer,Marcus Hebel,Björn Borgmann,Martin Laurenzis,Michael Arens
标识
DOI:10.1117/12.2303949
摘要

The number of reported incidents caused by UAVs, intentional as well as accidental, is rising. To avoid such incidents in future, it is essential to be able to detect UAVs. LiDAR systems are well known to be adequate sensors for object detection and tracking. In contrast to the detection of pedestrians or cars in traffic scenarios, the challenges of UAV detection lie in the small size, the various shapes and materials, and in the high speed and volatility of their movement. Due to the small size of the object and the limited sensor resolution, a UAV can hardly be detected in a single frame. It rather has to be spotted by its motion in the scene. In this paper, we present a fast approach for the tracking and detection of (low) flying small objects like commercial mini/micro UAVs. Unlike with the typical sequence -track-after-detect-, we start with looking for clues by finding minor 3D details in the 360° LiDAR scans of scene. If these clues are detectable in consecutive scans (possibly including a movement), the probability for the actual detection of a UAV is rising. For the algorithm development and a performance analysis, we collected data during a field trial with several different UAV types and several different sensor types (acoustic, radar, EO/IR, LiDAR). The results show that UAVs can be detected by the proposed methods, as long as the movements of the UAVs correspond to the LiDAR sensor's capabilities in scanning performance, range and resolution. Based on data collected during the field trial, the paper shows first results of this analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
在水一方应助wst采纳,获得10
刚刚
1秒前
今后应助陈大美采纳,获得10
1秒前
沿岸有贝壳完成签到,获得积分10
1秒前
xttju2014发布了新的文献求助10
1秒前
Nan语发布了新的文献求助10
1秒前
2秒前
传奇3应助核桃采纳,获得10
2秒前
着急的青枫应助核桃采纳,获得10
3秒前
科研通AI6应助圆锥香蕉采纳,获得30
3秒前
yukang应助核桃采纳,获得10
3秒前
Akim应助核桃采纳,获得10
3秒前
侯总应助核桃采纳,获得10
3秒前
科研通AI6应助核桃采纳,获得10
3秒前
顺心夜南应助核桃采纳,获得50
3秒前
科研通AI6应助核桃采纳,获得10
3秒前
大个应助核桃采纳,获得10
3秒前
科研通AI6应助核桃采纳,获得10
3秒前
3秒前
黑猫乾杯应助朱浩泽采纳,获得10
4秒前
知秋发布了新的文献求助10
4秒前
雷军发布了新的文献求助30
4秒前
桐桐应助正直映梦采纳,获得20
5秒前
5秒前
5秒前
负责丹亦完成签到,获得积分10
6秒前
6秒前
杂草的生活应助XUYQ采纳,获得10
6秒前
曹祉翔发布了新的文献求助30
6秒前
6秒前
6秒前
6秒前
zbzfp完成签到,获得积分10
7秒前
8秒前
英姑应助阿里嘎多采纳,获得10
8秒前
大气的惜天完成签到,获得积分10
8秒前
研小白发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5592546
求助须知:如何正确求助?哪些是违规求助? 4678486
关于积分的说明 14805429
捐赠科研通 4641796
什么是DOI,文献DOI怎么找? 2533998
邀请新用户注册赠送积分活动 1502102
关于科研通互助平台的介绍 1469205