亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Potential of lidar sensors for the detection of UAVs

激光雷达 目标检测 遥感 计算机视觉 雷达 人工智能 计算机科学 雷达跟踪器 跟踪(教育) 测距 模式识别(心理学) 地理 电信 心理学 教育学
作者
Marcus Hammer,Marcus Hebel,Björn Borgmann,Martin Laurenzis,Michael Arens
标识
DOI:10.1117/12.2303949
摘要

The number of reported incidents caused by UAVs, intentional as well as accidental, is rising. To avoid such incidents in future, it is essential to be able to detect UAVs. LiDAR systems are well known to be adequate sensors for object detection and tracking. In contrast to the detection of pedestrians or cars in traffic scenarios, the challenges of UAV detection lie in the small size, the various shapes and materials, and in the high speed and volatility of their movement. Due to the small size of the object and the limited sensor resolution, a UAV can hardly be detected in a single frame. It rather has to be spotted by its motion in the scene. In this paper, we present a fast approach for the tracking and detection of (low) flying small objects like commercial mini/micro UAVs. Unlike with the typical sequence -track-after-detect-, we start with looking for clues by finding minor 3D details in the 360° LiDAR scans of scene. If these clues are detectable in consecutive scans (possibly including a movement), the probability for the actual detection of a UAV is rising. For the algorithm development and a performance analysis, we collected data during a field trial with several different UAV types and several different sensor types (acoustic, radar, EO/IR, LiDAR). The results show that UAVs can be detected by the proposed methods, as long as the movements of the UAVs correspond to the LiDAR sensor's capabilities in scanning performance, range and resolution. Based on data collected during the field trial, the paper shows first results of this analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
壮观沉鱼完成签到 ,获得积分10
9秒前
11秒前
mjsdx完成签到 ,获得积分10
12秒前
守一完成签到,获得积分10
17秒前
25秒前
FashionBoy应助啦啦啦就好采纳,获得10
26秒前
南江悍匪发布了新的文献求助10
29秒前
30秒前
Panther完成签到,获得积分10
32秒前
Alex发布了新的文献求助1000
37秒前
harry发布了新的文献求助10
49秒前
Kashing完成签到,获得积分0
53秒前
南江悍匪完成签到,获得积分10
53秒前
英俊的铭应助科研通管家采纳,获得10
55秒前
科目三应助科研通管家采纳,获得10
55秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
59秒前
1分钟前
苹果丹烟完成签到 ,获得积分10
1分钟前
安渝完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
巫马嫣然完成签到,获得积分10
1分钟前
kk_1315完成签到,获得积分10
1分钟前
方1111完成签到,获得积分10
1分钟前
巫马嫣然发布了新的文献求助10
1分钟前
Omni完成签到,获得积分10
1分钟前
方1111发布了新的文献求助30
1分钟前
nooooorae应助kk_1315采纳,获得50
1分钟前
sora98完成签到 ,获得积分10
1分钟前
桐桐应助cool_随风采纳,获得10
1分钟前
汉堡包应助cool_随风采纳,获得10
1分钟前
大爱人生完成签到 ,获得积分10
1分钟前
sarah完成签到,获得积分10
1分钟前
吃花生酱的猫完成签到,获得积分10
1分钟前
射干鸢尾发布了新的文献求助10
1分钟前
1分钟前
香蕉迎南发布了新的文献求助30
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345722
求助须知:如何正确求助?哪些是违规求助? 4480561
关于积分的说明 13946480
捐赠科研通 4378124
什么是DOI,文献DOI怎么找? 2405626
邀请新用户注册赠送积分活动 1398183
关于科研通互助平台的介绍 1370666