Potential of lidar sensors for the detection of UAVs

激光雷达 目标检测 遥感 计算机视觉 雷达 人工智能 计算机科学 雷达跟踪器 跟踪(教育) 测距 模式识别(心理学) 地理 电信 心理学 教育学
作者
Marcus Hammer,Marcus Hebel,Björn Borgmann,Martin Laurenzis,Michael Arens
标识
DOI:10.1117/12.2303949
摘要

The number of reported incidents caused by UAVs, intentional as well as accidental, is rising. To avoid such incidents in future, it is essential to be able to detect UAVs. LiDAR systems are well known to be adequate sensors for object detection and tracking. In contrast to the detection of pedestrians or cars in traffic scenarios, the challenges of UAV detection lie in the small size, the various shapes and materials, and in the high speed and volatility of their movement. Due to the small size of the object and the limited sensor resolution, a UAV can hardly be detected in a single frame. It rather has to be spotted by its motion in the scene. In this paper, we present a fast approach for the tracking and detection of (low) flying small objects like commercial mini/micro UAVs. Unlike with the typical sequence -track-after-detect-, we start with looking for clues by finding minor 3D details in the 360° LiDAR scans of scene. If these clues are detectable in consecutive scans (possibly including a movement), the probability for the actual detection of a UAV is rising. For the algorithm development and a performance analysis, we collected data during a field trial with several different UAV types and several different sensor types (acoustic, radar, EO/IR, LiDAR). The results show that UAVs can be detected by the proposed methods, as long as the movements of the UAVs correspond to the LiDAR sensor's capabilities in scanning performance, range and resolution. Based on data collected during the field trial, the paper shows first results of this analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤哈哈哈哈完成签到,获得积分10
刚刚
霸气咖啡豆完成签到,获得积分10
1秒前
1秒前
97完成签到,获得积分10
1秒前
seankang发布了新的文献求助10
2秒前
2秒前
NexusExplorer应助英勇的绮烟采纳,获得10
2秒前
2秒前
呆萌的xue完成签到,获得积分10
3秒前
killer完成签到,获得积分10
3秒前
田様应助噜啦啦采纳,获得10
3秒前
3秒前
ruirui_love发布了新的文献求助10
3秒前
舒适静丹完成签到,获得积分10
3秒前
Wcy发布了新的文献求助10
4秒前
ljx发布了新的文献求助10
4秒前
nail发布了新的文献求助10
4秒前
赘婿应助flylmy2008采纳,获得10
4秒前
NexusExplorer应助朝伟呵采纳,获得30
4秒前
4秒前
慕青应助怡然平萱采纳,获得10
5秒前
6秒前
堇妗完成签到,获得积分10
6秒前
爱撒娇的飞烟完成签到 ,获得积分10
8秒前
四氟乙烯完成签到,获得积分10
8秒前
9秒前
9秒前
zeng完成签到,获得积分20
9秒前
9秒前
朝朝不归日完成签到,获得积分20
10秒前
10秒前
11秒前
congcong完成签到,获得积分10
11秒前
稳重盼夏发布了新的文献求助10
11秒前
张依蓓发布了新的文献求助10
11秒前
11秒前
文静宝川发布了新的文献求助10
12秒前
龙龍泷完成签到,获得积分10
12秒前
共享精神应助找啊找采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525344
求助须知:如何正确求助?哪些是违规求助? 4615587
关于积分的说明 14549232
捐赠科研通 4553605
什么是DOI,文献DOI怎么找? 2495428
邀请新用户注册赠送积分活动 1475975
关于科研通互助平台的介绍 1447716