Potential of lidar sensors for the detection of UAVs

激光雷达 目标检测 遥感 计算机视觉 雷达 人工智能 计算机科学 雷达跟踪器 跟踪(教育) 测距 模式识别(心理学) 地理 电信 心理学 教育学
作者
Marcus Hammer,Marcus Hebel,Björn Borgmann,Martin Laurenzis,Michael Arens
标识
DOI:10.1117/12.2303949
摘要

The number of reported incidents caused by UAVs, intentional as well as accidental, is rising. To avoid such incidents in future, it is essential to be able to detect UAVs. LiDAR systems are well known to be adequate sensors for object detection and tracking. In contrast to the detection of pedestrians or cars in traffic scenarios, the challenges of UAV detection lie in the small size, the various shapes and materials, and in the high speed and volatility of their movement. Due to the small size of the object and the limited sensor resolution, a UAV can hardly be detected in a single frame. It rather has to be spotted by its motion in the scene. In this paper, we present a fast approach for the tracking and detection of (low) flying small objects like commercial mini/micro UAVs. Unlike with the typical sequence -track-after-detect-, we start with looking for clues by finding minor 3D details in the 360° LiDAR scans of scene. If these clues are detectable in consecutive scans (possibly including a movement), the probability for the actual detection of a UAV is rising. For the algorithm development and a performance analysis, we collected data during a field trial with several different UAV types and several different sensor types (acoustic, radar, EO/IR, LiDAR). The results show that UAVs can be detected by the proposed methods, as long as the movements of the UAVs correspond to the LiDAR sensor's capabilities in scanning performance, range and resolution. Based on data collected during the field trial, the paper shows first results of this analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助xmy采纳,获得10
1秒前
让我瞅瞅发布了新的文献求助10
1秒前
2秒前
3秒前
干净的烧鹅完成签到,获得积分10
3秒前
科研通AI2S应助tdtk采纳,获得10
4秒前
大个应助乂贰ZERO叁采纳,获得10
6秒前
6秒前
8秒前
liuwenwen完成签到,获得积分10
8秒前
9秒前
科目三应助派大星采纳,获得30
11秒前
12秒前
可爱的函函应助Rita采纳,获得10
12秒前
12秒前
13秒前
yangcong发布了新的文献求助10
13秒前
yydragen应助学术渣渣采纳,获得30
18秒前
Muhammad发布了新的文献求助10
19秒前
yatou327完成签到,获得积分10
19秒前
21秒前
miao发布了新的文献求助10
21秒前
苏苏发布了新的文献求助10
22秒前
汉堡包应助学术混子采纳,获得10
24秒前
shimly0101xx发布了新的文献求助10
26秒前
阿珊完成签到,获得积分10
27秒前
Ki_Ayasato发布了新的文献求助150
28秒前
大模型应助北夏采纳,获得10
29秒前
cuber完成签到 ,获得积分10
30秒前
30秒前
XXJ发布了新的文献求助10
31秒前
科目三应助桀桀桀采纳,获得10
31秒前
shimly0101xx完成签到,获得积分10
33秒前
33秒前
Rondab应助好滴捏采纳,获得10
33秒前
泡泡鱼完成签到 ,获得积分10
34秒前
35秒前
36秒前
儒雅涵易完成签到 ,获得积分10
36秒前
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176