Potential of lidar sensors for the detection of UAVs

激光雷达 目标检测 遥感 计算机视觉 雷达 人工智能 计算机科学 雷达跟踪器 跟踪(教育) 测距 模式识别(心理学) 地理 电信 心理学 教育学
作者
Marcus Hammer,Marcus Hebel,Björn Borgmann,Martin Laurenzis,Michael Arens
标识
DOI:10.1117/12.2303949
摘要

The number of reported incidents caused by UAVs, intentional as well as accidental, is rising. To avoid such incidents in future, it is essential to be able to detect UAVs. LiDAR systems are well known to be adequate sensors for object detection and tracking. In contrast to the detection of pedestrians or cars in traffic scenarios, the challenges of UAV detection lie in the small size, the various shapes and materials, and in the high speed and volatility of their movement. Due to the small size of the object and the limited sensor resolution, a UAV can hardly be detected in a single frame. It rather has to be spotted by its motion in the scene. In this paper, we present a fast approach for the tracking and detection of (low) flying small objects like commercial mini/micro UAVs. Unlike with the typical sequence -track-after-detect-, we start with looking for clues by finding minor 3D details in the 360° LiDAR scans of scene. If these clues are detectable in consecutive scans (possibly including a movement), the probability for the actual detection of a UAV is rising. For the algorithm development and a performance analysis, we collected data during a field trial with several different UAV types and several different sensor types (acoustic, radar, EO/IR, LiDAR). The results show that UAVs can be detected by the proposed methods, as long as the movements of the UAVs correspond to the LiDAR sensor's capabilities in scanning performance, range and resolution. Based on data collected during the field trial, the paper shows first results of this analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouleibio完成签到,获得积分10
刚刚
fujun0095完成签到,获得积分10
刚刚
刚刚
聪明伊完成签到,获得积分10
刚刚
1秒前
笑点低纸鹤完成签到,获得积分20
2秒前
Ther1111完成签到,获得积分20
3秒前
Jasper应助jacq采纳,获得10
3秒前
Ava应助rw777采纳,获得10
4秒前
crk发布了新的文献求助10
4秒前
万里天完成签到 ,获得积分10
4秒前
Pdiligence完成签到 ,获得积分10
4秒前
体贴洋葱完成签到 ,获得积分10
4秒前
5秒前
qsl完成签到,获得积分20
5秒前
6秒前
布丁完成签到 ,获得积分10
6秒前
超帅的旭尧完成签到 ,获得积分10
7秒前
8秒前
打打应助思恋欢采纳,获得10
8秒前
8秒前
森林发布了新的文献求助10
9秒前
白山完成签到,获得积分10
9秒前
johangeis发布了新的文献求助10
10秒前
11秒前
阿敬发布了新的文献求助30
11秒前
dominic12361完成签到 ,获得积分10
12秒前
文静小小发布了新的文献求助10
12秒前
青源发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
橘色天际线应助稳重盼夏采纳,获得10
15秒前
感谢欣慰的馒头转发科研通微信,获得积分50
16秒前
袁乾博发布了新的文献求助30
17秒前
高贵菲菲完成签到,获得积分10
18秒前
老实的碧萱完成签到,获得积分20
18秒前
liuzhong完成签到,获得积分10
18秒前
感谢包容的小蚂蚁转发科研通微信,获得积分50
18秒前
李爱国应助百鳴采纳,获得10
19秒前
Tao完成签到,获得积分10
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460749
求助须知:如何正确求助?哪些是违规求助? 4565886
关于积分的说明 14301627
捐赠科研通 4491349
什么是DOI,文献DOI怎么找? 2460286
邀请新用户注册赠送积分活动 1449633
关于科研通互助平台的介绍 1425474