Potential of lidar sensors for the detection of UAVs

激光雷达 目标检测 遥感 计算机视觉 雷达 人工智能 计算机科学 雷达跟踪器 跟踪(教育) 测距 模式识别(心理学) 地理 电信 心理学 教育学
作者
Marcus Hammer,Marcus Hebel,Björn Borgmann,Martin Laurenzis,Michael Arens
标识
DOI:10.1117/12.2303949
摘要

The number of reported incidents caused by UAVs, intentional as well as accidental, is rising. To avoid such incidents in future, it is essential to be able to detect UAVs. LiDAR systems are well known to be adequate sensors for object detection and tracking. In contrast to the detection of pedestrians or cars in traffic scenarios, the challenges of UAV detection lie in the small size, the various shapes and materials, and in the high speed and volatility of their movement. Due to the small size of the object and the limited sensor resolution, a UAV can hardly be detected in a single frame. It rather has to be spotted by its motion in the scene. In this paper, we present a fast approach for the tracking and detection of (low) flying small objects like commercial mini/micro UAVs. Unlike with the typical sequence -track-after-detect-, we start with looking for clues by finding minor 3D details in the 360° LiDAR scans of scene. If these clues are detectable in consecutive scans (possibly including a movement), the probability for the actual detection of a UAV is rising. For the algorithm development and a performance analysis, we collected data during a field trial with several different UAV types and several different sensor types (acoustic, radar, EO/IR, LiDAR). The results show that UAVs can be detected by the proposed methods, as long as the movements of the UAVs correspond to the LiDAR sensor's capabilities in scanning performance, range and resolution. Based on data collected during the field trial, the paper shows first results of this analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
付和旭完成签到,获得积分10
刚刚
wang发布了新的文献求助30
刚刚
刚刚
科研通AI6应助诗琪采纳,获得10
1秒前
瓦剌留学生完成签到 ,获得积分10
1秒前
Juany发布了新的文献求助10
2秒前
2秒前
烂漫的语海完成签到 ,获得积分10
2秒前
3秒前
火星上誉完成签到 ,获得积分10
3秒前
3秒前
幸福镜子完成签到,获得积分10
3秒前
4秒前
4秒前
Miya_han发布了新的文献求助10
4秒前
彪壮的草莓完成签到 ,获得积分10
5秒前
先先发布了新的文献求助30
5秒前
6秒前
晴晴完成签到,获得积分10
6秒前
123完成签到,获得积分10
6秒前
小白发布了新的文献求助10
7秒前
朔月发布了新的文献求助10
8秒前
duankaidi关注了科研通微信公众号
8秒前
炙热的小刺猬完成签到,获得积分10
8秒前
LIU230907完成签到,获得积分10
8秒前
Akim应助李牧采纳,获得10
8秒前
福瑞灯完成签到,获得积分10
9秒前
研友_VZG7GZ应助枣子枣子枣采纳,获得10
9秒前
9秒前
粗心的浩然关注了科研通微信公众号
9秒前
9秒前
9秒前
11秒前
11秒前
12秒前
从心发布了新的文献求助10
12秒前
共享精神应助就吃汉堡采纳,获得10
12秒前
yl发布了新的文献求助10
12秒前
Hello应助爬不起来采纳,获得10
13秒前
婉腾完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835