亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Potential of lidar sensors for the detection of UAVs

激光雷达 目标检测 遥感 计算机视觉 雷达 人工智能 计算机科学 雷达跟踪器 跟踪(教育) 测距 模式识别(心理学) 地理 电信 心理学 教育学
作者
Marcus Hammer,Marcus Hebel,Björn Borgmann,Martin Laurenzis,Michael Arens
标识
DOI:10.1117/12.2303949
摘要

The number of reported incidents caused by UAVs, intentional as well as accidental, is rising. To avoid such incidents in future, it is essential to be able to detect UAVs. LiDAR systems are well known to be adequate sensors for object detection and tracking. In contrast to the detection of pedestrians or cars in traffic scenarios, the challenges of UAV detection lie in the small size, the various shapes and materials, and in the high speed and volatility of their movement. Due to the small size of the object and the limited sensor resolution, a UAV can hardly be detected in a single frame. It rather has to be spotted by its motion in the scene. In this paper, we present a fast approach for the tracking and detection of (low) flying small objects like commercial mini/micro UAVs. Unlike with the typical sequence -track-after-detect-, we start with looking for clues by finding minor 3D details in the 360° LiDAR scans of scene. If these clues are detectable in consecutive scans (possibly including a movement), the probability for the actual detection of a UAV is rising. For the algorithm development and a performance analysis, we collected data during a field trial with several different UAV types and several different sensor types (acoustic, radar, EO/IR, LiDAR). The results show that UAVs can be detected by the proposed methods, as long as the movements of the UAVs correspond to the LiDAR sensor's capabilities in scanning performance, range and resolution. Based on data collected during the field trial, the paper shows first results of this analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助khan采纳,获得10
6秒前
7秒前
Hello应助若离采纳,获得10
8秒前
XUAN发布了新的文献求助10
8秒前
冷HorToo完成签到 ,获得积分10
12秒前
13秒前
共享精神应助khan采纳,获得10
25秒前
ccczzz完成签到,获得积分10
39秒前
Spine完成签到,获得积分10
39秒前
43秒前
GPTea应助khan采纳,获得10
49秒前
ccczzz发布了新的文献求助30
49秒前
内向如松发布了新的文献求助30
55秒前
56秒前
57秒前
若离发布了新的文献求助10
1分钟前
nenoaowu发布了新的文献求助10
1分钟前
aveturner完成签到,获得积分10
1分钟前
1分钟前
1分钟前
nenoaowu完成签到,获得积分10
1分钟前
开胃咖喱发布了新的文献求助10
1分钟前
顾矜应助香奈宝采纳,获得10
1分钟前
Affenyi发布了新的文献求助10
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
1分钟前
科研通AI5应助khan采纳,获得10
1分钟前
枫于林完成签到 ,获得积分0
1分钟前
1分钟前
若离完成签到,获得积分10
1分钟前
棠真完成签到 ,获得积分0
1分钟前
PrayOne完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
dzh完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186017
求助须知:如何正确求助?哪些是违规求助? 4371340
关于积分的说明 13612062
捐赠科研通 4223700
什么是DOI,文献DOI怎么找? 2316584
邀请新用户注册赠送积分活动 1315199
关于科研通互助平台的介绍 1264220