A rigorous fastener inspection approach for high-speed railway from structured light sensors

紧固件 火车 分类器(UML) 计算机科学 决策树 工程类 人工智能 结构工程 地图学 地理
作者
Qingzhou Mao,Hao Cui,Qingwu Hu,Xiaochun Ren
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:143: 249-267 被引量:51
标识
DOI:10.1016/j.isprsjprs.2017.11.007
摘要

Rail fasteners are critical components in high-speed railway. Therefore, they are inspected periodically to ensure the safety of high-speed trains. Manual inspection and two-dimensional visual inspection are the commonly used methods. However, both of them have drawbacks. In this paper, a rigorous high-speed railway fastener inspection approach from structured light sensors is proposed to detect damaged and loose fasteners. Firstly, precise and extremely dense point cloud of fasteners are obtained from commercial structured light sensors. With a decision tree classifier, the defects of the fasteners are classified in detail. Furthermore, a normal vector based center extraction method for complex cylindrical surface is proposed to extract the centerline of the metal clip of normal fasteners. Lastly, the looseness of the fastener is evaluated based on the extracted centerline of the metal clip. Experiments were conducted on high-speed railways to evaluate the accuracy, effectiveness, and the influence of the parameters of the proposed method. The overall precision of the decision tree classifier is over 99.8% and the root-mean-square error of looseness check is 0.15 mm, demonstrating a reliable and effective solution for high-speed railway fastener maintenance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
活着完成签到,获得积分10
1秒前
隐形曼青应助汎影采纳,获得10
2秒前
桑榆。完成签到,获得积分20
2秒前
华仔应助myg8627采纳,获得10
4秒前
4秒前
cc关闭了cc文献求助
4秒前
cc关闭了cc文献求助
4秒前
斯文败类应助tina采纳,获得10
5秒前
5秒前
Ava应助小桃枝采纳,获得10
5秒前
5秒前
5秒前
5秒前
iNk应助菜菜采纳,获得20
5秒前
6秒前
6秒前
shang完成签到 ,获得积分10
7秒前
杨冀军完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
Nimeide完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
fffgz发布了新的文献求助10
10秒前
江流发布了新的文献求助10
10秒前
麦当劳薯条完成签到,获得积分20
13秒前
orixero应助汎影采纳,获得10
13秒前
王记伟关注了科研通微信公众号
13秒前
过客发布了新的文献求助10
13秒前
14秒前
jiunuan应助住在魔仙堡的鱼采纳,获得10
15秒前
15秒前
ning发布了新的文献求助10
15秒前
康宝荣关注了科研通微信公众号
17秒前
unfraid发布了新的文献求助10
17秒前
18秒前
Liiiii发布了新的文献求助10
18秒前
852应助黄尔法采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536670
求助须知:如何正确求助?哪些是违规求助? 4624270
关于积分的说明 14591267
捐赠科研通 4564769
什么是DOI,文献DOI怎么找? 2501907
邀请新用户注册赠送积分活动 1480641
关于科研通互助平台的介绍 1451943