材料科学
冲孔
极限抗拉强度
复合材料
体积分数
无纺布
垂直的
纤维
渗透(战争)
断层摄影术
压缩(物理)
多孔性
计算机断层摄影术
几何学
光学
医学
数学
物理
运筹学
工程类
放射科
作者
Tatsuya Ishikawa,Yujiro Ishii,Kengo Nakasone,Yutaka Ohkoshi,Kim Kyoung Hou
标识
DOI:10.1177/0040517517736470
摘要
Needle-punching conditions determine the structure of nonwoven fabrics and the structure determines their tensile properties. However, the structural parameters of nonwoven fabrics and the relationship between these parameters and tensile properties have not been quantitatively analyzed. Therefore, we analyzed the structure of needle-punched nonwoven fabrics by X-ray computed tomography (XCT). The relationships between the needle-punching conditions, tensile properties, and structural parameters, such as fiber-volume fraction and three-dimensional fiber orientation, were investigated. The fiber-volume fraction in the middle layer of the fabric was clearly larger than that of the bulk above a compression ratio of 1.4. With increasing needle penetration depth, the fibers tended to become oriented both parallel and perpendicular to the normal direction of the fabric plane while avoiding the intermediate direction. A linear relationship was found between the obtained volume fraction of fibers oriented in the normal direction and the tensile strength of the fabric. These results demonstrate that XCT image analysis is effective to evaluate the structure of needle-punched nonwoven fabrics and to design the properties of nonwoven fabrics.
科研通智能强力驱动
Strongly Powered by AbleSci AI