数码产品
智能材料
纳米技术
天然材料
计算机科学
仿生材料
仿生学
软质材料
工程类
电气工程
材料科学
高分子科学
作者
Yaqing Liu,Ke He,Geng Chen,Wan Ru Leow,Xiaodong Chen
出处
期刊:Chemical Reviews
[American Chemical Society]
日期:2017-10-09
卷期号:117 (20): 12893-12941
被引量:669
标识
DOI:10.1021/acs.chemrev.7b00291
摘要
Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI