An integrated explicit–implicit algorithm for vehicle–rail–bridge dynamic simulations

桥(图论) 算法 计算机科学 振动 可靠性(半导体) 蒙特卡罗方法 工程类 数学 医学 功率(物理) 统计 物理 量子力学 内科学
作者
Zhibin Jin,Chuanchuan Hu,Shiling Pei,Hongyan Liu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit [SAGE]
卷期号:232 (6): 1895-1913 被引量:20
标识
DOI:10.1177/0954409717753210
摘要

The dynamic interaction between the vehicle, rail, and bridges presents a huge computational challenge, especially for reliability analysis based on Monte Carlo simulations. In this study, an integrated algorithm is proposed for the vehicle–rail–bridge dynamic interaction problem. This algorithm divides the system into two subdomains, i.e. the vehicle–rail subdomain and the bridge subdomain. The vehicle–rail subdomain and the bridge subdomain are integrated by the Zhai algorithm and the Newmark-β algorithm, respectively. The integrated algorithm allows different time steps (or multitime steps) to be used for the two domains: a large time step for the bridge subdomain and a smaller one for the vehicle–rail subdomain. The stability region of the proposed algorithm was found through the two-degree-of-freedom model problem, when a single time step is used in both subdomains. The accuracy of the algorithm was numerically investigated through the two-degree-of-freedom model. The vehicle–rail–bridge vibration excited by rail irregularities and earthquakes was simulated using the multitime step algorithm. The effect of the time step ratio (ratio of the large time step to the small time step) on the accuracy of the vehicle–rail–bridge responses was investigated. It has been shown that the time step ratio of less than 50 produces vehicle–rail–bridge responses in an accurate manner for engineering purposes. The multitime step algorithm can solve the vehicle–rail–bridge problem 20 times faster than the single time step algorithms that are conventionally used in the vehicle–rail–bridge simulations. This multitime step algorithm provides an efficient alternative for solving the dynamic interaction between vehicle–rail and large-scale civil structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xjcy应助科研通管家采纳,获得10
刚刚
xjcy应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
无望幽月完成签到 ,获得积分10
刚刚
刚刚
打打应助jianni采纳,获得10
刚刚
刚刚
小龅牙吖完成签到,获得积分10
1秒前
热心访风完成签到,获得积分10
1秒前
1秒前
张zzz发布了新的文献求助10
1秒前
1秒前
xjcy应助yixiao采纳,获得10
2秒前
2秒前
爱坤坤发布了新的文献求助10
2秒前
Hohowinnie完成签到,获得积分10
2秒前
3秒前
听白完成签到,获得积分10
3秒前
4秒前
西哈哈发布了新的文献求助10
4秒前
4秒前
追寻紫安完成签到,获得积分10
5秒前
JIAYU完成签到,获得积分10
5秒前
5秒前
cyj完成签到 ,获得积分10
6秒前
爆米花应助lushuai采纳,获得10
6秒前
舒适忆枫发布了新的文献求助10
6秒前
椰子树发布了新的文献求助10
6秒前
6秒前
万能图书馆应助冰糖采纳,获得10
6秒前
zhang005on发布了新的文献求助10
7秒前
爱坤坤完成签到,获得积分10
7秒前
明亮飞双完成签到,获得积分10
8秒前
xeason完成签到,获得积分10
8秒前
Ava应助wushuqing采纳,获得10
9秒前
10秒前
10秒前
神勇青枫应助包容的千兰采纳,获得10
10秒前
10秒前
取名字脑细胞全废完成签到,获得积分10
10秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217353
求助须知:如何正确求助?哪些是违规求助? 2866617
关于积分的说明 8152518
捐赠科研通 2533308
什么是DOI,文献DOI怎么找? 1366190
科研通“疑难数据库(出版商)”最低求助积分说明 644710
邀请新用户注册赠送积分活动 617698