已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning Image Reconstruction Simulation for Electromagnetic Tomography

稳健性(进化) 迭代重建 算法 人工智能 计算机科学 断层摄影术 计算机视觉 噪音(视频) 人工神经网络 深度学习 图像(数学) 图像处理 反问题 数学 光学 物理 数学分析 基因 生物化学 化学
作者
Jun Xiao,Ze Liu,Pengfei Zhao,Yong Li,Jiwei Huo
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:18 (8): 3290-3298 被引量:58
标识
DOI:10.1109/jsen.2018.2809485
摘要

In the inverse problem of tomography field, the solution of image reconstruction is often ill-posed and the prior information about imaging features is limited. We expect to learn imaging autonomously by learning algorithms and representative samples. So in this paper, two deep learning image reconstruction algorithms SSAE+RBF and optimized fully connected (FC) are proposed to learn imaging in electromagnetic tomography (EMT). It is a preliminary attempt of sample training algorithm in EMT. Furthermore, a loss function is proposed and 30000 image samples for training, verification, and test are designed. Simulation experiments show the following. First, for the 26000 training samples, both of two algorithms have the ability to basically reproduce the actual distribution of object field. Second, for the random 2000 test samples, which has similar type with training sample but doesn't learned, both of the two algorithms are superior to the traditional algorithms in image reconstruction. In addition, the mean value of image correlation coefficient (ICC) and relative image error are 0.817 and 0.530 for optimized FC network without noise. Third, when 0%-7% noise levels are added to the test set, the standard deviation of ICC in two algorithms are 0.007 and 0.040. To a certain extent, it proves the robustness of these networks. Fourth, in addition, our deep learning algorithm has an advantage in computing speed with graphic processing unit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
into0s完成签到,获得积分10
2秒前
俏皮易绿完成签到 ,获得积分10
2秒前
2秒前
踏实雨发布了新的文献求助10
3秒前
seal发布了新的文献求助10
3秒前
5秒前
踏实博超完成签到 ,获得积分10
6秒前
Lucy完成签到,获得积分10
6秒前
Darcy发布了新的文献求助10
6秒前
粥粥完成签到 ,获得积分10
7秒前
7秒前
幸运小怪兽完成签到,获得积分10
8秒前
ypp完成签到,获得积分10
8秒前
科研通AI2S应助qunqing3采纳,获得30
9秒前
落后的衬衫完成签到,获得积分10
9秒前
10秒前
10秒前
changliu完成签到,获得积分10
11秒前
11秒前
Akim应助Trey采纳,获得10
12秒前
13秒前
envdavid完成签到,获得积分10
13秒前
大椒完成签到 ,获得积分10
14秒前
HOLLYWOO完成签到 ,获得积分10
14秒前
何丽雅发布了新的文献求助30
14秒前
16秒前
Jessie发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
Lighten完成签到 ,获得积分10
17秒前
Lee完成签到,获得积分20
17秒前
12发布了新的文献求助10
17秒前
Jasper应助physicalproblem采纳,获得10
18秒前
18秒前
19秒前
19秒前
浮游应助瘦瘦问柳采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400986
求助须知:如何正确求助?哪些是违规求助? 4520031
关于积分的说明 14077904
捐赠科研通 4432951
什么是DOI,文献DOI怎么找? 2433919
邀请新用户注册赠送积分活动 1426111
关于科研通互助平台的介绍 1404733