Deep Learning Image Reconstruction Simulation for Electromagnetic Tomography

稳健性(进化) 迭代重建 算法 人工智能 计算机科学 断层摄影术 计算机视觉 噪音(视频) 人工神经网络 深度学习 图像(数学) 图像处理 反问题 数学 光学 物理 数学分析 基因 生物化学 化学
作者
Jun Xiao,Ze Liu,Pengfei Zhao,Yong Li,Jiwei Huo
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:18 (8): 3290-3298 被引量:58
标识
DOI:10.1109/jsen.2018.2809485
摘要

In the inverse problem of tomography field, the solution of image reconstruction is often ill-posed and the prior information about imaging features is limited. We expect to learn imaging autonomously by learning algorithms and representative samples. So in this paper, two deep learning image reconstruction algorithms SSAE+RBF and optimized fully connected (FC) are proposed to learn imaging in electromagnetic tomography (EMT). It is a preliminary attempt of sample training algorithm in EMT. Furthermore, a loss function is proposed and 30000 image samples for training, verification, and test are designed. Simulation experiments show the following. First, for the 26000 training samples, both of two algorithms have the ability to basically reproduce the actual distribution of object field. Second, for the random 2000 test samples, which has similar type with training sample but doesn't learned, both of the two algorithms are superior to the traditional algorithms in image reconstruction. In addition, the mean value of image correlation coefficient (ICC) and relative image error are 0.817 and 0.530 for optimized FC network without noise. Third, when 0%-7% noise levels are added to the test set, the standard deviation of ICC in two algorithms are 0.007 and 0.040. To a certain extent, it proves the robustness of these networks. Fourth, in addition, our deep learning algorithm has an advantage in computing speed with graphic processing unit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dusk完成签到,获得积分10
1秒前
隐形曼青应助张磊采纳,获得10
1秒前
Orange应助msk采纳,获得10
1秒前
纯真的板栗完成签到 ,获得积分10
1秒前
羔羊完成签到,获得积分10
1秒前
1秒前
空心胶囊完成签到,获得积分10
1秒前
ydfqlzj完成签到,获得积分10
2秒前
浮生如梦完成签到,获得积分10
2秒前
繁荣的匪完成签到,获得积分10
2秒前
胡杨完成签到,获得积分10
3秒前
小广完成签到,获得积分0
3秒前
carcar发布了新的文献求助10
4秒前
英俊的铭应助平常的紫真采纳,获得10
4秒前
EdRefrain发布了新的文献求助10
4秒前
cheng完成签到,获得积分10
5秒前
h1gg发布了新的文献求助10
5秒前
科研通AI6应助hq采纳,获得10
5秒前
正直的煎饼完成签到,获得积分10
6秒前
7秒前
杨雨帆发布了新的文献求助10
7秒前
搜集达人应助ddssww采纳,获得10
7秒前
门住完成签到 ,获得积分10
7秒前
7秒前
屁颠屁颠_狼完成签到 ,获得积分10
8秒前
发大财发布了新的文献求助10
8秒前
英姑应助张丹采纳,获得10
9秒前
9秒前
舒心的寻琴完成签到,获得积分10
9秒前
9秒前
xsnyy完成签到 ,获得积分10
10秒前
冷静的小虾米完成签到 ,获得积分10
10秒前
10秒前
筱灬发布了新的文献求助10
11秒前
科学修仙完成签到,获得积分10
11秒前
在水一方应助科研小萌新采纳,获得10
11秒前
深情安青应助肖敏采纳,获得10
11秒前
11秒前
h1gg完成签到,获得积分10
12秒前
yan发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572947
求助须知:如何正确求助?哪些是违规求助? 3993556
关于积分的说明 12362626
捐赠科研通 3666597
什么是DOI,文献DOI怎么找? 2020884
邀请新用户注册赠送积分活动 1055071
科研通“疑难数据库(出版商)”最低求助积分说明 942490