CRISPR/Cas9 editing genome of extremophile Halomonas spp.

清脆的 Cas9 盐单胞菌属 极端微生物 基因组编辑 嗜盐菌 质粒 羟基烷酸 计算生物学 基因组 生物 基因 化学 遗传学 细菌 嗜热菌
作者
Qin Qin,Ling Chen,Yiqing Zhao,Tian Yang,Jin Yin,Yingying Guo,Guo Qiang Chen
出处
期刊:Metabolic Engineering [Elsevier]
卷期号:47: 219-229 被引量:129
标识
DOI:10.1016/j.ymben.2018.03.018
摘要

Extremophiles are suitable chassis for developing the next generation industrial biotechnology (NGIB) due to their resistance to microbial contamination. However, engineering extremophiles are not an easy task. Halomonas, an industrially interesting halophile able to grow under unsterile and continuous conditions in large-scale processes, can only be engineered using suicide plasmid-mediated two-step homologous recombination which is very laborious and time-consuming (up to half a year). A convenient approach for the engineering of halophiles that can possibly be extended to other extremophiles is therefore urgently required. To meet this requirement, a rapid, efficient and scarless method via CRISPR/Cas9 system was developed in this study for genome editing in Halomonas. The method achieved the highest efficiency of 100%. When eight different mutants were constructed via this special CRISPR/Cas9 method to study the combinatorial influences of four different genes on the glucose catabolism in H. bluephagenesis TD01, it took only three weeks to complete the deletion and insertion of up to 4.5 kb DNA. H. bluephagenesis was designed to produce a microbial copolymer P(3HB-co-3HV) consisting of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV). The CRISPR/Cas9 was employed to delete the prpC gene in H. bluephagenesis TD01. Shake flask studies showed that the 3HV fraction in the copolymers increased approximately 16-folds, demonstrating enhanced effectiveness of the ΔprpC mutant to synthesize PHBV. This genome engineering strategy significantly speeds up the studies on Halomonas engineering, opening up a wide area for developing NGIB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leeteukxx关注了科研通微信公众号
1秒前
田様应助小土豆采纳,获得10
2秒前
4秒前
4秒前
朱子发布了新的文献求助10
4秒前
5秒前
天天快乐应助标致白卉采纳,获得10
6秒前
wwhh完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
liao应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
10秒前
Dec应助科研通管家采纳,获得20
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
华仔应助科研通管家采纳,获得10
10秒前
嘉心糖应助科研通管家采纳,获得30
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
yangya应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
yangya应助科研通管家采纳,获得10
10秒前
wwhh发布了新的文献求助10
10秒前
11秒前
善学以致用应助wyx采纳,获得10
11秒前
安详的灰狼应助想象之中采纳,获得10
11秒前
lnx发布了新的文献求助10
12秒前
酷波er应助健忘的夏柳采纳,获得10
13秒前
敏感的盼夏完成签到 ,获得积分10
14秒前
野性的柠檬应助温冰雪采纳,获得10
15秒前
尛瞐慶成发布了新的文献求助10
16秒前
云水瓶发布了新的文献求助10
17秒前
十二完成签到,获得积分10
17秒前
18秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313770
求助须知:如何正确求助?哪些是违规求助? 2946093
关于积分的说明 8528271
捐赠科研通 2621651
什么是DOI,文献DOI怎么找? 1434003
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650673