Improving Arterial Spin Labeling by Using Deep Learning

医学 减法 威尔科克森符号秩检验 动脉自旋标记 标准差 模式识别(心理学) 卷积神经网络 人工智能 分割 均方误差 核医学 灌注扫描 磁共振成像 灌注 统计 数学 放射科 计算机科学 曼惠特尼U检验 内科学 算术
作者
Ki Hwan Kim,Seung Hong Choi,Sung‐Hong Park
出处
期刊:Radiology [Radiological Society of North America]
卷期号:287 (2): 658-666 被引量:77
标识
DOI:10.1148/radiol.2017171154
摘要

Purpose To develop a deep learning algorithm that generates arterial spin labeling (ASL) perfusion images with higher accuracy and robustness by using a smaller number of subtraction images. Materials and Methods For ASL image generation from pair-wise subtraction, we used a convolutional neural network (CNN) as a deep learning algorithm. The ground truth perfusion images were generated by averaging six or seven pairwise subtraction images acquired with (a) conventional pseudocontinuous arterial spin labeling from seven healthy subjects or (b) Hadamard-encoded pseudocontinuous ASL from 114 patients with various diseases. CNNs were trained to generate perfusion images from a smaller number (two or three) of subtraction images and evaluated by means of cross-validation. CNNs from the patient data sets were also tested on 26 separate stroke data sets. CNNs were compared with the conventional averaging method in terms of mean square error and radiologic score by using a paired t test and/or Wilcoxon signed-rank test. Results Mean square errors were approximately 40% lower than those of the conventional averaging method for the cross-validation with the healthy subjects and patients and the separate test with the patients who had experienced a stroke (P < .001). Region-of-interest analysis in stroke regions showed that cerebral blood flow maps from CNN (mean ± standard deviation, 19.7 mL per 100 g/min ± 9.7) had smaller mean square errors than those determined with the conventional averaging method (43.2 ± 29.8) (P < .001). Radiologic scoring demonstrated that CNNs suppressed noise and motion and/or segmentation artifacts better than the conventional averaging method did (P < .001). Conclusion CNNs provided superior perfusion image quality and more accurate perfusion measurement compared with those of the conventional averaging method for generation of ASL images from pair-wise subtraction images. © RSNA, 2017.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助lzz采纳,获得10
刚刚
生动初柳发布了新的文献求助10
刚刚
科研通AI2S应助hjkk采纳,获得10
1秒前
廿廿完成签到,获得积分10
1秒前
2秒前
嗳7发布了新的文献求助10
2秒前
小埋发布了新的文献求助20
2秒前
Eureka发布了新的文献求助10
3秒前
4秒前
star完成签到,获得积分20
4秒前
5秒前
永不停歇奈格里完成签到,获得积分10
5秒前
爱听歌娩完成签到,获得积分10
5秒前
玠岚完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
呼延含双发布了新的文献求助10
8秒前
8秒前
酷炫无声完成签到 ,获得积分10
9秒前
Eureka完成签到,获得积分10
10秒前
压缩应助lzz采纳,获得10
10秒前
天天快乐应助嗳7采纳,获得10
11秒前
HHHHHN发布了新的文献求助10
12秒前
12秒前
pigzhu发布了新的文献求助10
12秒前
CharlseFan发布了新的文献求助10
12秒前
12秒前
沐沐发布了新的文献求助10
12秒前
小埋完成签到,获得积分10
12秒前
大模型应助卢昊焱采纳,获得10
13秒前
贺明慧完成签到,获得积分10
13秒前
14秒前
14秒前
李健的粉丝团团长应助hjkk采纳,获得30
14秒前
科研完成签到 ,获得积分10
15秒前
俭朴的可冥应助安不尤采纳,获得10
15秒前
15秒前
呼延含双完成签到,获得积分10
16秒前
CipherSage应助罗哥采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124236
求助须知:如何正确求助?哪些是违规求助? 2774582
关于积分的说明 7723198
捐赠科研通 2430090
什么是DOI,文献DOI怎么找? 1290917
科研通“疑难数据库(出版商)”最低求助积分说明 621960
版权声明 600297