Electrochemical and photochemical studies on Dawson-type [P2W18O62]6-, [S2W18O62]4- and [S2Mo18O62]4- polyoxometalates as catalysts for water oxidation in different media

多金属氧酸盐 催化作用 化学 氧化剂 水溶液 电化学 试剂 无机化学 氧化还原 溶剂 过氧化氢 水介质 有机化学 物理化学 电极
作者
Gianluca Bernardini
标识
DOI:10.4225/03/58929333d9afe
摘要

In this thesis is discussed the photochemical behaviour of polyoxometalates in different media with concomitant oxidation of water. Polyoxometalate anions (POMs) are a large group of complex inorganic compounds which are easily prepared in H2O from inexpensive, readily accessible precursors such as MO42- where M = W or Mo. 18WO42- + 32H3PO4 + 23H+ → P2W18O626- + 30H2PO-4 + 18H2O [1] POMs are generally large metal-oxygen clusters that form a unique, structurally diverse class of inorganic materials. The application of polyoxometalates in science is remarkably diverse: from medicine to catalysis, electronic devices to membranes etc. The most important application of polyoxometalates over the past two decades is in catalysis. In fact polyoxometalates often exhibit most of the features of a perfect environmentally benign oxidation catalyst: O2 is the only oxidant used, water can be used as the solvent (depending on the cation), and the catalyst possesses no organic ligands. Often they are also thermodynamically stable toward oxidative degradation. An interesting application for polyoxometalates as catalysts is the production of H2 and oxygen. Some general properties that make polyoxometalates an attractive class of material for catalysis have been reported. Selection of a suitable countercation can make the polyoxometalate soluble in either aqueous or organic solvents. Typically tetrabutylammonium (Bu4N+) is chosen as the countercation for reactions in organic solutions, and Na+ or K+ are commonly chosen for reactions in aqueous solutions. Generally speaking, molybdates are better oxidizing reagents than tungstates. Thus, their reoxidation by dioxygen is very slow, often requiring the use of activated carbon with dioxygen or the use of hydrogen peroxide. It is also possible to electrochemically regenerate the starting material by applying an oxidizing current that is positive enough to oxidize back the molybdenum polyoxometalate. When a polyoxometalate is photolysed by UV and near-visible light in the presence of a suitable electron donor (ED), for example isopropanol, a series of photoreactions result in stepwise reduction of the polyoxometalate and oxidation of the ED. In the case of (CH3)2CHOH the overall mechanism may be represented as follows: 2POMn- + (CH3)2CHOH → 2POM(n+1)- + (CH3)2CO + 2H+ [2] Reduction is accompanied by only minor structural changes as the reducing electrons occupy orbitals that are essentially non-bonding. As reduction proceeds, the POM anions acquire an increasing negative charge thereby encouraging protonation, thus the negative charge is lowered and encourages further reduction. It has been noticed during photochemical experiments that in molecular solvents, photo-reduction with the tungsten based polyoxometalates was achieved only if an efficient electron donor such as isopropanol is present. In contrast, the photo-reduction of the molybdenum based polyoxometalates was achieved in molecular solvents without the addition of isopropanol with water present in the solvent acting as an electron donor: [S2Mo18O62]4- + hν → [S2Mo18O62]*4- [3] 2[S2Mo18O62]*4- + H2O → 2[S2Mo18O62]5- + ½ O2 + 2H+ [4] Photo-reduction of [S2Mo18O62]4- to [S2Mo18O62]5- was confirmed by RDE voltammograms and visually colour change, while the Clark-type electrode recorded the increase of oxygen during irradiation with light. However, quantitative photoreduction of all polyoxometalates studied in this thesis occurred when POMs were dissolved in protic (DEAS, DEAP) or aprotic ([BMIM][BF4] and [BMIM][PF6]) room temperature ionic liquids containing adventitious or deliberately added water. Photo-reduction of POMs was also noted when these ionic liquids were used as electrolyte in molecular solvents. Thus, under these conditions water acted as efficient electrons donor when ionic liquids were employed as neat solvents or dissolved in concentration ≥ 0.05 M in molecular solvents. Ionic liquids represent a relatively new class of solvent that consist entirely of ionic species. They have many fascinating properties which make them of fundamental interest to chemists. Significantly, both the thermodynamics and kinetics of reactions carried out in ionic liquid media differ from those in conventional molecular solvents. The achievement of water oxidation in ionic liquids can be explained by the different nature of water, compared to molecular solvents, in this medium. Thus water oxidation was possible by the different nature of water molecules when surrounded by ionic liquid molecules clusters. It is possible that in ionic liquids the oxygen-hydrogen bond in water molecules is much weaker than in molecular solvents. This characteristic allows the break of this bond with the resultant production of oxygen and protons. The importances of the studies conducted in this thesis are innovative to achieve water oxidation. In this thesis it is proposed a new pathway using ionic liquid media for water oxidation using polyoxometalates that was not presented before my studies. Furthermore, water oxidation was achieved in aqueous solutions containing ionic liquids as electrolytes. This will allows extended electrochemical studies that were not possible in neat ionic liquids.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
a2271559577完成签到,获得积分10
1秒前
SWAGGER123发布了新的文献求助10
1秒前
2秒前
2秒前
lucky22关注了科研通微信公众号
3秒前
4秒前
5秒前
Jasper应助刘春秀采纳,获得10
5秒前
6秒前
Kismet发布了新的文献求助10
7秒前
8秒前
StonesKing发布了新的文献求助10
8秒前
dn发布了新的文献求助10
8秒前
爆米花应助淡淡的新之采纳,获得10
8秒前
刻苦的坤发布了新的文献求助10
8秒前
小蘑菇应助球球采纳,获得10
10秒前
10秒前
victor1995888完成签到,获得积分10
12秒前
SciGPT应助LiuXinping采纳,获得10
13秒前
科研小白完成签到,获得积分10
13秒前
烟花应助言无间采纳,获得10
13秒前
marketing完成签到,获得积分10
14秒前
可爱寻菡完成签到,获得积分20
14秒前
14秒前
JamesPei应助会武功的阿吉采纳,获得10
14秒前
羊羊羊发布了新的文献求助10
14秒前
张宇发布了新的文献求助30
15秒前
华仔应助zrw采纳,获得10
16秒前
19秒前
tingz发布了新的文献求助10
19秒前
李健的小迷弟应助marketing采纳,获得10
19秒前
ttt完成签到,获得积分10
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
DAYAN完成签到,获得积分10
21秒前
shy完成签到,获得积分10
22秒前
22秒前
22秒前
希望天下0贩的0应助张宇采纳,获得10
23秒前
斯文败类应助搞怪的易槐采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952814
求助须知:如何正确求助?哪些是违规求助? 3498265
关于积分的说明 11091101
捐赠科研通 3228832
什么是DOI,文献DOI怎么找? 1785147
邀请新用户注册赠送积分活动 869189
科研通“疑难数据库(出版商)”最低求助积分说明 801367