A deep learning model for early prediction of Alzheimer's disease dementia based on hippocampal magnetic resonance imaging data

痴呆 一致性 四分位数 磁共振成像 神经影像学 医学 阿尔茨海默病 阿尔茨海默病神经影像学倡议 疾病 内科学 心理学 精神科 置信区间 放射科
作者
Hongming Li,Mohamad Habes,David A. Wolk,Yong Fan
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:15 (8): 1059-1070 被引量:190
标识
DOI:10.1016/j.jalz.2019.02.007
摘要

Abstract Introduction It is challenging at baseline to predict when and which individuals who meet criteria for mild cognitive impairment (MCI) will ultimately progress to Alzheimer's disease (AD) dementia. Methods A deep learning method is developed and validated based on magnetic resonance imaging scans of 2146 subjects (803 for training and 1343 for validation) to predict MCI subjects' progression to AD dementia in a time‐to‐event analysis setting. Results The deep‐learning time‐to‐event model predicted individual subjects' progression to AD dementia with a concordance index of 0.762 on 439 Alzheimer's Disease Neuroimaging Initiative testing MCI subjects with follow‐up duration from 6 to 78 months (quartiles: [24, 42, 54]) and a concordance index of 0.781 on 40 Australian Imaging Biomarkers and Lifestyle Study of Aging testing MCI subjects with follow‐up duration from 18 to 54 months (quartiles: [18, 36, 54]). The predicted progression risk also clustered individual subjects into subgroups with significant differences in their progression time to AD dementia ( P < .0002). Improved performance for predicting progression to AD dementia (concordance index = 0.864) was obtained when the deep learning–based progression risk was combined with baseline clinical measures. Discussion Our method provides a cost effective and accurate means for prognosis and potentially to facilitate enrollment in clinical trials with individuals likely to progress within a specific temporal period.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助陈忱溪采纳,获得10
刚刚
竹筏过海应助美味的薯片采纳,获得30
1秒前
鳗鱼起眸发布了新的文献求助10
1秒前
2秒前
3秒前
无辜皮皮虾完成签到,获得积分10
4秒前
4秒前
4秒前
聪慧的怀绿完成签到,获得积分10
5秒前
英俊的铭应助西子阳采纳,获得10
6秒前
6秒前
123发布了新的文献求助10
6秒前
7秒前
石头完成签到,获得积分10
8秒前
9秒前
在内卷中躺平的混子完成签到,获得积分10
10秒前
魏源发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
Zzhangoo完成签到 ,获得积分10
12秒前
12秒前
桃李发布了新的文献求助20
12秒前
孤独箴言给孤独箴言的求助进行了留言
13秒前
CodeCraft应助魏源采纳,获得10
14秒前
车谷子完成签到,获得积分10
14秒前
深情安青应助一自文又欠采纳,获得10
15秒前
慕青应助画家采纳,获得30
16秒前
16秒前
16秒前
大个应助西子阳采纳,获得10
17秒前
韩韩喜欢吃蛋糕完成签到,获得积分20
17秒前
17秒前
18秒前
20秒前
hhy完成签到,获得积分10
20秒前
21秒前
23秒前
唯博发布了新的文献求助10
23秒前
小白完成签到 ,获得积分10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070