Deep learning based multi-temporal crop classification

人工智能 计算机科学 随机森林 F1得分 支持向量机 深度学习 梯度升压 卷积神经网络 提取器 Boosting(机器学习) 机器学习 模式识别(心理学) 工艺工程 工程类
作者
Liheng Zhong,Lina Hu,Hang Zhou
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:221: 430-443 被引量:863
标识
DOI:10.1016/j.rse.2018.11.032
摘要

This study aims to develop a deep learning based classification framework for remotely sensed time series. The experiment was carried out in Yolo County, California, which has a very diverse irrigated agricultural system dominated by economic crops. For the challenging task of classifying summer crops using Landsat Enhanced Vegetation Index (EVI) time series, two types of deep learning models were designed: one is based on Long Short-Term Memory (LSTM), and the other is based on one-dimensional convolutional (Conv1D) layers. Three widely-used classifiers were also tested for comparison, including a gradient boosting machine called XGBoost, Random Forest, and Support Vector Machine. Although LSTM is widely used for sequential data representation, in this study its accuracy (82.41%) and F1 score (0.67) were the lowest among all the classifiers. Among non-deep-learning classifiers, XGBoost achieved the best result with 84.17% accuracy and an F1 score of 0.69. The highest accuracy (85.54%) and F1 score (0.73) were achieved by the Conv1D-based model, which mainly consists of a stack of Conv1D layers and an inception module. The behavior of the Conv1D-based model was inspected by visualizing the activation on different layers. The model employs EVI time series by examining shapes at various scales in a hierarchical manner. Lower Conv1D layers of the optimized model capture small scale temporal variations, while upper layers focus on overall seasonal patterns. Conv1D layers were used as an embedded multi-level feature extractor in the classification model which automatically extracts features from input time series during training. The automated feature extraction reduces the dependency on manual feature engineering and pre-defined equations of crop growing cycles. This study shows that the Conv1D-based deep learning framework provides an effective and efficient method of time series representation in multi-temporal classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助Yang采纳,获得10
刚刚
顺利萧完成签到,获得积分10
1秒前
一小部分我完成签到 ,获得积分10
2秒前
蓝风铃完成签到 ,获得积分10
2秒前
科科完成签到 ,获得积分10
2秒前
ergatoid完成签到,获得积分10
2秒前
拾光完成签到,获得积分10
2秒前
sang完成签到,获得积分10
2秒前
哈哈完成签到 ,获得积分10
2秒前
shuangyanli完成签到,获得积分10
3秒前
听雨完成签到,获得积分10
3秒前
前行的灿完成签到 ,获得积分10
4秒前
miawei完成签到,获得积分10
4秒前
欣喜的沛容完成签到,获得积分10
4秒前
icerell完成签到,获得积分10
4秒前
5秒前
5秒前
如初完成签到,获得积分10
5秒前
ZYK完成签到,获得积分10
5秒前
RUI完成签到,获得积分10
6秒前
浙大波波完成签到 ,获得积分10
6秒前
TMY完成签到,获得积分10
6秒前
清璃完成签到 ,获得积分10
6秒前
一马奔腾完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
一二完成签到,获得积分10
7秒前
小马甲应助meteor采纳,获得10
8秒前
Maestro_S应助长白山的灵芝采纳,获得10
8秒前
小猴儿完成签到,获得积分10
9秒前
杨多望完成签到,获得积分20
9秒前
9秒前
英勇凝旋完成签到,获得积分10
10秒前
魔幻一笑完成签到,获得积分10
11秒前
火之高兴发布了新的文献求助10
11秒前
11秒前
堀江真夏完成签到 ,获得积分10
12秒前
LLLLL发布了新的文献求助10
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5348074
求助须知:如何正确求助?哪些是违规求助? 4482327
关于积分的说明 13950024
捐赠科研通 4380886
什么是DOI,文献DOI怎么找? 2407159
邀请新用户注册赠送积分活动 1399667
关于科研通互助平台的介绍 1372955