Deep learning based multi-temporal crop classification

人工智能 计算机科学 随机森林 F1得分 支持向量机 深度学习 梯度升压 卷积神经网络 提取器 Boosting(机器学习) 机器学习 模式识别(心理学) 工艺工程 工程类
作者
Liheng Zhong,Lina Hu,Hang Zhou
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:221: 430-443 被引量:820
标识
DOI:10.1016/j.rse.2018.11.032
摘要

This study aims to develop a deep learning based classification framework for remotely sensed time series. The experiment was carried out in Yolo County, California, which has a very diverse irrigated agricultural system dominated by economic crops. For the challenging task of classifying summer crops using Landsat Enhanced Vegetation Index (EVI) time series, two types of deep learning models were designed: one is based on Long Short-Term Memory (LSTM), and the other is based on one-dimensional convolutional (Conv1D) layers. Three widely-used classifiers were also tested for comparison, including a gradient boosting machine called XGBoost, Random Forest, and Support Vector Machine. Although LSTM is widely used for sequential data representation, in this study its accuracy (82.41%) and F1 score (0.67) were the lowest among all the classifiers. Among non-deep-learning classifiers, XGBoost achieved the best result with 84.17% accuracy and an F1 score of 0.69. The highest accuracy (85.54%) and F1 score (0.73) were achieved by the Conv1D-based model, which mainly consists of a stack of Conv1D layers and an inception module. The behavior of the Conv1D-based model was inspected by visualizing the activation on different layers. The model employs EVI time series by examining shapes at various scales in a hierarchical manner. Lower Conv1D layers of the optimized model capture small scale temporal variations, while upper layers focus on overall seasonal patterns. Conv1D layers were used as an embedded multi-level feature extractor in the classification model which automatically extracts features from input time series during training. The automated feature extraction reduces the dependency on manual feature engineering and pre-defined equations of crop growing cycles. This study shows that the Conv1D-based deep learning framework provides an effective and efficient method of time series representation in multi-temporal classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小眼儿发布了新的文献求助20
刚刚
七七发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
共享精神应助科狸采纳,获得10
2秒前
2秒前
sibo完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
wch发布了新的文献求助10
3秒前
3秒前
4秒前
xueyi_102938发布了新的文献求助20
4秒前
4秒前
冷傲新柔发布了新的文献求助10
4秒前
xumodehudie完成签到 ,获得积分10
4秒前
Maestro_S发布了新的文献求助10
4秒前
大个应助heyheybaby采纳,获得10
4秒前
非要叫我起个昵称完成签到,获得积分10
5秒前
wyc1025发布了新的文献求助10
5秒前
5秒前
5秒前
yu发布了新的文献求助10
5秒前
红桃小六完成签到,获得积分10
6秒前
今后应助刘qqqqq采纳,获得10
6秒前
Jing发布了新的文献求助10
6秒前
majf发布了新的文献求助10
6秒前
7秒前
8秒前
fan发布了新的文献求助10
8秒前
想按时毕业啊完成签到,获得积分10
9秒前
GuangChe应助蓝天白云采纳,获得30
9秒前
duxh123发布了新的文献求助10
9秒前
9秒前
10秒前
liushuyu发布了新的文献求助10
10秒前
可乐完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954728
求助须知:如何正确求助?哪些是违规求助? 3500844
关于积分的说明 11101288
捐赠科研通 3231320
什么是DOI,文献DOI怎么找? 1786401
邀请新用户注册赠送积分活动 870028
科研通“疑难数据库(出版商)”最低求助积分说明 801771