Deep learning based multi-temporal crop classification

人工智能 计算机科学 随机森林 F1得分 支持向量机 深度学习 梯度升压 卷积神经网络 提取器 Boosting(机器学习) 机器学习 模式识别(心理学) 工艺工程 工程类
作者
Liheng Zhong,Lina Hu,Hang Zhou
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:221: 430-443 被引量:687
标识
DOI:10.1016/j.rse.2018.11.032
摘要

This study aims to develop a deep learning based classification framework for remotely sensed time series. The experiment was carried out in Yolo County, California, which has a very diverse irrigated agricultural system dominated by economic crops. For the challenging task of classifying summer crops using Landsat Enhanced Vegetation Index (EVI) time series, two types of deep learning models were designed: one is based on Long Short-Term Memory (LSTM), and the other is based on one-dimensional convolutional (Conv1D) layers. Three widely-used classifiers were also tested for comparison, including a gradient boosting machine called XGBoost, Random Forest, and Support Vector Machine. Although LSTM is widely used for sequential data representation, in this study its accuracy (82.41%) and F1 score (0.67) were the lowest among all the classifiers. Among non-deep-learning classifiers, XGBoost achieved the best result with 84.17% accuracy and an F1 score of 0.69. The highest accuracy (85.54%) and F1 score (0.73) were achieved by the Conv1D-based model, which mainly consists of a stack of Conv1D layers and an inception module. The behavior of the Conv1D-based model was inspected by visualizing the activation on different layers. The model employs EVI time series by examining shapes at various scales in a hierarchical manner. Lower Conv1D layers of the optimized model capture small scale temporal variations, while upper layers focus on overall seasonal patterns. Conv1D layers were used as an embedded multi-level feature extractor in the classification model which automatically extracts features from input time series during training. The automated feature extraction reduces the dependency on manual feature engineering and pre-defined equations of crop growing cycles. This study shows that the Conv1D-based deep learning framework provides an effective and efficient method of time series representation in multi-temporal classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮若枫完成签到 ,获得积分10
刚刚
金箍棒完成签到,获得积分10
1秒前
不熬夜猫子完成签到,获得积分10
1秒前
1秒前
王宇辉完成签到,获得积分10
3秒前
吴糖完成签到,获得积分10
3秒前
老张发布了新的文献求助10
4秒前
柯沸完成签到,获得积分10
4秒前
风中老三完成签到,获得积分10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
张亮应助科研通管家采纳,获得50
5秒前
5秒前
上官若男应助www采纳,获得10
5秒前
123发布了新的文献求助10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
汉堡包应助无限的可乐采纳,获得10
5秒前
宋鹏炜发布了新的文献求助10
6秒前
caltrate515发布了新的文献求助10
7秒前
7秒前
云云完成签到 ,获得积分10
8秒前
内向苡完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
小七辅助完成签到,获得积分10
10秒前
lzr完成签到 ,获得积分10
10秒前
李白完成签到,获得积分10
10秒前
yyyq0721完成签到,获得积分10
10秒前
poorzz发布了新的文献求助10
10秒前
自觉士萧完成签到,获得积分10
10秒前
从容白凝完成签到,获得积分10
11秒前
Ava应助brightmys采纳,获得30
12秒前
12秒前
12秒前
Doctor_Peng完成签到,获得积分10
12秒前
咯噔完成签到,获得积分10
12秒前
西门访天发布了新的文献求助10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147171
求助须知:如何正确求助?哪些是违规求助? 2798462
关于积分的说明 7829305
捐赠科研通 2455179
什么是DOI,文献DOI怎么找? 1306639
科研通“疑难数据库(出版商)”最低求助积分说明 627858
版权声明 601567