Deep learning based multi-temporal crop classification

人工智能 计算机科学 随机森林 F1得分 支持向量机 深度学习 梯度升压 卷积神经网络 提取器 Boosting(机器学习) 机器学习 模式识别(心理学) 工艺工程 工程类
作者
Liheng Zhong,Lina Hu,Hang Zhou
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:221: 430-443 被引量:767
标识
DOI:10.1016/j.rse.2018.11.032
摘要

This study aims to develop a deep learning based classification framework for remotely sensed time series. The experiment was carried out in Yolo County, California, which has a very diverse irrigated agricultural system dominated by economic crops. For the challenging task of classifying summer crops using Landsat Enhanced Vegetation Index (EVI) time series, two types of deep learning models were designed: one is based on Long Short-Term Memory (LSTM), and the other is based on one-dimensional convolutional (Conv1D) layers. Three widely-used classifiers were also tested for comparison, including a gradient boosting machine called XGBoost, Random Forest, and Support Vector Machine. Although LSTM is widely used for sequential data representation, in this study its accuracy (82.41%) and F1 score (0.67) were the lowest among all the classifiers. Among non-deep-learning classifiers, XGBoost achieved the best result with 84.17% accuracy and an F1 score of 0.69. The highest accuracy (85.54%) and F1 score (0.73) were achieved by the Conv1D-based model, which mainly consists of a stack of Conv1D layers and an inception module. The behavior of the Conv1D-based model was inspected by visualizing the activation on different layers. The model employs EVI time series by examining shapes at various scales in a hierarchical manner. Lower Conv1D layers of the optimized model capture small scale temporal variations, while upper layers focus on overall seasonal patterns. Conv1D layers were used as an embedded multi-level feature extractor in the classification model which automatically extracts features from input time series during training. The automated feature extraction reduces the dependency on manual feature engineering and pre-defined equations of crop growing cycles. This study shows that the Conv1D-based deep learning framework provides an effective and efficient method of time series representation in multi-temporal classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yyyy关注了科研通微信公众号
刚刚
Jane完成签到 ,获得积分10
1秒前
1秒前
1秒前
kento发布了新的文献求助30
1秒前
Akim应助balzacsun采纳,获得10
2秒前
狼来了aas发布了新的文献求助10
2秒前
3秒前
didi完成签到,获得积分10
3秒前
嘻嘻发布了新的文献求助10
5秒前
冲冲冲完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
善良身影完成签到,获得积分10
8秒前
天天快乐应助郭豪琪采纳,获得10
9秒前
13679165979发布了新的文献求助10
11秒前
13679165979发布了新的文献求助10
11秒前
13679165979发布了新的文献求助10
11秒前
13679165979发布了新的文献求助10
11秒前
13679165979发布了新的文献求助10
11秒前
11秒前
Su发布了新的文献求助10
11秒前
11秒前
淡定的思松应助呆萌士晋采纳,获得10
11秒前
12秒前
13秒前
dilli完成签到 ,获得积分10
13秒前
cwy发布了新的文献求助10
15秒前
wz发布了新的文献求助10
15秒前
balzacsun发布了新的文献求助10
17秒前
JamesPei应助星星采纳,获得10
17秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824