Deep learning based multi-temporal crop classification

人工智能 计算机科学 随机森林 F1得分 支持向量机 深度学习 梯度升压 卷积神经网络 提取器 Boosting(机器学习) 机器学习 模式识别(心理学) 工艺工程 工程类
作者
Liheng Zhong,Lina Hu,Hang Zhou
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:221: 430-443 被引量:863
标识
DOI:10.1016/j.rse.2018.11.032
摘要

This study aims to develop a deep learning based classification framework for remotely sensed time series. The experiment was carried out in Yolo County, California, which has a very diverse irrigated agricultural system dominated by economic crops. For the challenging task of classifying summer crops using Landsat Enhanced Vegetation Index (EVI) time series, two types of deep learning models were designed: one is based on Long Short-Term Memory (LSTM), and the other is based on one-dimensional convolutional (Conv1D) layers. Three widely-used classifiers were also tested for comparison, including a gradient boosting machine called XGBoost, Random Forest, and Support Vector Machine. Although LSTM is widely used for sequential data representation, in this study its accuracy (82.41%) and F1 score (0.67) were the lowest among all the classifiers. Among non-deep-learning classifiers, XGBoost achieved the best result with 84.17% accuracy and an F1 score of 0.69. The highest accuracy (85.54%) and F1 score (0.73) were achieved by the Conv1D-based model, which mainly consists of a stack of Conv1D layers and an inception module. The behavior of the Conv1D-based model was inspected by visualizing the activation on different layers. The model employs EVI time series by examining shapes at various scales in a hierarchical manner. Lower Conv1D layers of the optimized model capture small scale temporal variations, while upper layers focus on overall seasonal patterns. Conv1D layers were used as an embedded multi-level feature extractor in the classification model which automatically extracts features from input time series during training. The automated feature extraction reduces the dependency on manual feature engineering and pre-defined equations of crop growing cycles. This study shows that the Conv1D-based deep learning framework provides an effective and efficient method of time series representation in multi-temporal classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
healer完成签到,获得积分10
5秒前
7秒前
忘词完成签到,获得积分10
8秒前
chen完成签到 ,获得积分10
8秒前
萝卜卷心菜完成签到 ,获得积分10
10秒前
12秒前
目m发布了新的文献求助10
12秒前
13秒前
王也发布了新的文献求助10
18秒前
Bailey完成签到,获得积分10
18秒前
19秒前
脑洞疼应助MoNeng采纳,获得10
21秒前
21秒前
蓝天应助加贝采纳,获得10
22秒前
23秒前
刘泽民完成签到,获得积分10
25秒前
CodeCraft应助佳期采纳,获得10
26秒前
浮游应助草中有粑粑采纳,获得10
26秒前
小二郎应助YEZQ采纳,获得10
27秒前
27秒前
28秒前
28秒前
椰子完成签到,获得积分10
30秒前
dzc完成签到,获得积分20
31秒前
Lyubb完成签到 ,获得积分10
32秒前
MoNeng发布了新的文献求助10
33秒前
34秒前
月半完成签到,获得积分10
34秒前
35秒前
VDC应助karstbing采纳,获得30
35秒前
浮游应助草中有粑粑采纳,获得10
35秒前
Orange应助冰激凌采纳,获得10
36秒前
小康完成签到,获得积分10
36秒前
37秒前
沉静弘文完成签到 ,获得积分10
37秒前
充电宝应助王也采纳,获得10
38秒前
linclee完成签到,获得积分10
39秒前
39秒前
佳期发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563635
求助须知:如何正确求助?哪些是违规求助? 4648551
关于积分的说明 14685268
捐赠科研通 4590482
什么是DOI,文献DOI怎么找? 2518601
邀请新用户注册赠送积分活动 1491196
关于科研通互助平台的介绍 1462478