Deep learning based multi-temporal crop classification

人工智能 计算机科学 随机森林 F1得分 支持向量机 深度学习 梯度升压 卷积神经网络 提取器 Boosting(机器学习) 机器学习 模式识别(心理学) 工艺工程 工程类
作者
Liheng Zhong,Lina Hu,Hang Zhou
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:221: 430-443 被引量:863
标识
DOI:10.1016/j.rse.2018.11.032
摘要

This study aims to develop a deep learning based classification framework for remotely sensed time series. The experiment was carried out in Yolo County, California, which has a very diverse irrigated agricultural system dominated by economic crops. For the challenging task of classifying summer crops using Landsat Enhanced Vegetation Index (EVI) time series, two types of deep learning models were designed: one is based on Long Short-Term Memory (LSTM), and the other is based on one-dimensional convolutional (Conv1D) layers. Three widely-used classifiers were also tested for comparison, including a gradient boosting machine called XGBoost, Random Forest, and Support Vector Machine. Although LSTM is widely used for sequential data representation, in this study its accuracy (82.41%) and F1 score (0.67) were the lowest among all the classifiers. Among non-deep-learning classifiers, XGBoost achieved the best result with 84.17% accuracy and an F1 score of 0.69. The highest accuracy (85.54%) and F1 score (0.73) were achieved by the Conv1D-based model, which mainly consists of a stack of Conv1D layers and an inception module. The behavior of the Conv1D-based model was inspected by visualizing the activation on different layers. The model employs EVI time series by examining shapes at various scales in a hierarchical manner. Lower Conv1D layers of the optimized model capture small scale temporal variations, while upper layers focus on overall seasonal patterns. Conv1D layers were used as an embedded multi-level feature extractor in the classification model which automatically extracts features from input time series during training. The automated feature extraction reduces the dependency on manual feature engineering and pre-defined equations of crop growing cycles. This study shows that the Conv1D-based deep learning framework provides an effective and efficient method of time series representation in multi-temporal classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
buno应助机灵的友儿采纳,获得10
1秒前
雪白的如天完成签到 ,获得积分10
1秒前
鹿笙完成签到 ,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
han发布了新的文献求助10
4秒前
微笑睫毛膏关注了科研通微信公众号
4秒前
慕青应助Lily采纳,获得10
4秒前
陈圈圈完成签到,获得积分10
5秒前
哎哟发布了新的文献求助10
5秒前
大胆砖头完成签到 ,获得积分10
5秒前
优美的丹烟完成签到,获得积分10
6秒前
小辞芙芙完成签到,获得积分10
6秒前
CipherSage应助111采纳,获得10
6秒前
DHVZA完成签到,获得积分20
7秒前
爆米花应助平常的谷秋采纳,获得10
7秒前
诚心的梅发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
善学以致用应助akui采纳,获得10
8秒前
8秒前
8秒前
草莓熊草莓完成签到,获得积分10
9秒前
打打应助Thrain采纳,获得10
10秒前
15966014069发布了新的文献求助10
11秒前
smile完成签到,获得积分10
12秒前
Mia完成签到,获得积分10
12秒前
13秒前
七里野草完成签到,获得积分10
14秒前
SY完成签到,获得积分10
14秒前
15秒前
16秒前
诚心的梅完成签到,获得积分10
16秒前
16秒前
酷波er应助舒服的又菱采纳,获得10
16秒前
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601274
求助须知:如何正确求助?哪些是违规求助? 4686785
关于积分的说明 14846051
捐赠科研通 4680352
什么是DOI,文献DOI怎么找? 2539276
邀请新用户注册赠送积分活动 1506151
关于科研通互助平台的介绍 1471283