已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning based multi-temporal crop classification

人工智能 计算机科学 随机森林 F1得分 支持向量机 深度学习 梯度升压 卷积神经网络 提取器 Boosting(机器学习) 机器学习 模式识别(心理学) 工艺工程 工程类
作者
Liheng Zhong,Lina Hu,Hang Zhou
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:221: 430-443 被引量:850
标识
DOI:10.1016/j.rse.2018.11.032
摘要

This study aims to develop a deep learning based classification framework for remotely sensed time series. The experiment was carried out in Yolo County, California, which has a very diverse irrigated agricultural system dominated by economic crops. For the challenging task of classifying summer crops using Landsat Enhanced Vegetation Index (EVI) time series, two types of deep learning models were designed: one is based on Long Short-Term Memory (LSTM), and the other is based on one-dimensional convolutional (Conv1D) layers. Three widely-used classifiers were also tested for comparison, including a gradient boosting machine called XGBoost, Random Forest, and Support Vector Machine. Although LSTM is widely used for sequential data representation, in this study its accuracy (82.41%) and F1 score (0.67) were the lowest among all the classifiers. Among non-deep-learning classifiers, XGBoost achieved the best result with 84.17% accuracy and an F1 score of 0.69. The highest accuracy (85.54%) and F1 score (0.73) were achieved by the Conv1D-based model, which mainly consists of a stack of Conv1D layers and an inception module. The behavior of the Conv1D-based model was inspected by visualizing the activation on different layers. The model employs EVI time series by examining shapes at various scales in a hierarchical manner. Lower Conv1D layers of the optimized model capture small scale temporal variations, while upper layers focus on overall seasonal patterns. Conv1D layers were used as an embedded multi-level feature extractor in the classification model which automatically extracts features from input time series during training. The automated feature extraction reduces the dependency on manual feature engineering and pre-defined equations of crop growing cycles. This study shows that the Conv1D-based deep learning framework provides an effective and efficient method of time series representation in multi-temporal classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123完成签到,获得积分10
5秒前
sweet雪儿妞妞完成签到 ,获得积分10
7秒前
zy完成签到 ,获得积分10
8秒前
haha发布了新的文献求助10
9秒前
昆工完成签到 ,获得积分10
11秒前
顺利科研毕业完成签到,获得积分10
11秒前
胡杨柳完成签到,获得积分10
13秒前
zhaoxi完成签到 ,获得积分10
15秒前
15秒前
monster完成签到 ,获得积分10
16秒前
17秒前
隐形曼青应助筱如采纳,获得10
20秒前
张张发布了新的文献求助30
21秒前
稳重的白筠完成签到 ,获得积分10
21秒前
ink发布了新的文献求助30
21秒前
mingjie发布了新的文献求助10
21秒前
群群完成签到,获得积分20
22秒前
粽子完成签到,获得积分10
22秒前
23秒前
24秒前
量子星尘发布了新的文献求助10
27秒前
群群发布了新的文献求助10
27秒前
白云垛完成签到 ,获得积分20
28秒前
29秒前
30秒前
KTV完成签到 ,获得积分10
30秒前
可爱的函函应助啦啦啦采纳,获得10
31秒前
健忘捕完成签到 ,获得积分10
32秒前
wpz发布了新的文献求助10
32秒前
36秒前
如意葶完成签到 ,获得积分10
36秒前
wpz完成签到,获得积分10
37秒前
平淡如天完成签到,获得积分10
40秒前
ink应助平淡雅阳采纳,获得10
41秒前
迷人冥完成签到 ,获得积分10
41秒前
zzl完成签到 ,获得积分10
43秒前
SciGPT应助ZZCrazy采纳,获得10
45秒前
峰feng完成签到 ,获得积分10
46秒前
爱科研的小凡完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610291
求助须知:如何正确求助?哪些是违规求助? 4016305
关于积分的说明 12434932
捐赠科研通 3697878
什么是DOI,文献DOI怎么找? 2039077
邀请新用户注册赠送积分活动 1071968
科研通“疑难数据库(出版商)”最低求助积分说明 955614