Traffic and Computation Co-Offloading With Reinforcement Learning in Fog Computing for Industrial Applications

计算机科学 计算卸载 强化学习 分布式计算 移动边缘计算 马尔可夫决策过程 调度(生产过程) 瓶颈 计算机网络 云计算 供应 移动设备 边缘计算 服务器 马尔可夫过程 人工智能 嵌入式系统 工程类 操作系统 统计 数学 运营管理
作者
Yixuan Wang,Kun Wang,Huawei Huang,Toshiaki Miyazaki,Song Guo
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 976-986 被引量:198
标识
DOI:10.1109/tii.2018.2883991
摘要

In the past decade, network data communication has experienced a rapid growth, which has led to explosive congestion in heterogeneous networks. Moreover, the emerging industrial applications, such as automatic driving put forward higher requirements on both networks and devices. On the contrary, running computation-intensive industrial applications locally are constrained by the limited resources of devices. Correspondingly, fog computing has recently emerged to reduce the congestion of content-centric networks. It has proven to be a good way in industry and traffic for reducing network delay and processing time. In addition, device-to-device offloading is viewed as a promising paradigm to transmit network data in mobile environment, especially for autodriving vehicles. In this paper, jointly taking both the network traffic and computation workload of industrial traffic into consideration, we explore a fundamental tradeoff between energy consumption and service delay when provisioning mobile services in vehicular networks. In particular, when the available resource in mobile vehicles becomes a bottleneck, we propose a novel model to depict the users' willingness of contributing their resources to the public. We then formulate a cost minimization problem by exploiting the framework of Markov decision progress (MDP) and propose the dynamic reinforcement learning scheduling algorithm and the deep dynamic scheduling algorithm to solve the offloading decision problem. By adopting different mobile trajectory traces, we conduct extensive simulations to evaluate the performance of the proposed algorithms. The results show that our proposed algorithms outperform other benchmark schemes in the mobile edge networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助感动的薄荷采纳,获得10
刚刚
李鱼丸完成签到,获得积分10
刚刚
大力信封发布了新的文献求助20
1秒前
华仔应助董方圆采纳,获得10
2秒前
顾矜应助量子星尘采纳,获得20
2秒前
3秒前
小彭友完成签到,获得积分10
4秒前
大观天下发布了新的文献求助10
4秒前
外向盼晴完成签到,获得积分20
4秒前
笋蛋发布了新的文献求助10
5秒前
ii完成签到,获得积分10
5秒前
5秒前
芋泥发布了新的文献求助10
5秒前
renee_yok完成签到 ,获得积分10
5秒前
6秒前
思源应助xiaobai采纳,获得10
6秒前
喂喂喂发布了新的文献求助10
6秒前
半柚应助的撒大苏打采纳,获得10
7秒前
8秒前
重要外套发布了新的文献求助10
8秒前
8秒前
斯文败类应助量子星尘采纳,获得10
8秒前
9秒前
脑洞疼应助量子星尘采纳,获得10
9秒前
9秒前
heartworm发布了新的文献求助10
9秒前
赘婿应助yukuai采纳,获得10
10秒前
orixero应助量子星尘采纳,获得30
10秒前
bkagyin应助小罗同学采纳,获得10
11秒前
椰子壳发布了新的文献求助10
11秒前
12秒前
偶然发现的西柚完成签到 ,获得积分10
13秒前
yan完成签到,获得积分10
13秒前
orixero应助翻似烂柯人采纳,获得10
13秒前
干净的寄翠完成签到 ,获得积分10
13秒前
Sw发布了新的文献求助10
14秒前
tingtingzhao完成签到 ,获得积分10
15秒前
Hello应助HX采纳,获得10
16秒前
所所应助聆风采纳,获得10
16秒前
爆米花应助昂口3采纳,获得10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961728
求助须知:如何正确求助?哪些是违规求助? 3508080
关于积分的说明 11139419
捐赠科研通 3240738
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803344