Traffic and Computation Co-Offloading With Reinforcement Learning in Fog Computing for Industrial Applications

计算机科学 计算卸载 强化学习 分布式计算 移动边缘计算 马尔可夫决策过程 调度(生产过程) 瓶颈 计算机网络 云计算 供应 移动设备 边缘计算 服务器 马尔可夫过程 人工智能 嵌入式系统 工程类 操作系统 统计 数学 运营管理
作者
Yixuan Wang,Kun Wang,Huawei Huang,Toshiaki Miyazaki,Song Guo
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 976-986 被引量:198
标识
DOI:10.1109/tii.2018.2883991
摘要

In the past decade, network data communication has experienced a rapid growth, which has led to explosive congestion in heterogeneous networks. Moreover, the emerging industrial applications, such as automatic driving put forward higher requirements on both networks and devices. On the contrary, running computation-intensive industrial applications locally are constrained by the limited resources of devices. Correspondingly, fog computing has recently emerged to reduce the congestion of content-centric networks. It has proven to be a good way in industry and traffic for reducing network delay and processing time. In addition, device-to-device offloading is viewed as a promising paradigm to transmit network data in mobile environment, especially for autodriving vehicles. In this paper, jointly taking both the network traffic and computation workload of industrial traffic into consideration, we explore a fundamental tradeoff between energy consumption and service delay when provisioning mobile services in vehicular networks. In particular, when the available resource in mobile vehicles becomes a bottleneck, we propose a novel model to depict the users' willingness of contributing their resources to the public. We then formulate a cost minimization problem by exploiting the framework of Markov decision progress (MDP) and propose the dynamic reinforcement learning scheduling algorithm and the deep dynamic scheduling algorithm to solve the offloading decision problem. By adopting different mobile trajectory traces, we conduct extensive simulations to evaluate the performance of the proposed algorithms. The results show that our proposed algorithms outperform other benchmark schemes in the mobile edge networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
威武诺言发布了新的文献求助10
刚刚
科研通AI5应助孙二二采纳,获得10
刚刚
刚刚
英姑应助rookie_b0采纳,获得10
1秒前
毛慢慢发布了新的文献求助10
1秒前
123完成签到,获得积分10
1秒前
kangkang完成签到,获得积分10
2秒前
丘比特应助东风第一枝采纳,获得10
2秒前
2秒前
丰知然应助normankasimodo采纳,获得10
3秒前
黑森林发布了新的文献求助30
3秒前
hu970发布了新的文献求助10
3秒前
3秒前
俭朴夜雪发布了新的文献求助30
3秒前
林上草应助lzj001983采纳,获得10
3秒前
小白完成签到,获得积分20
3秒前
药疯了完成签到,获得积分20
4秒前
桐桐应助123采纳,获得10
4秒前
风中寄云发布了新的文献求助10
4秒前
buuyoo发布了新的文献求助10
4秒前
zjudxn发布了新的文献求助10
4秒前
春夏爱科研完成签到,获得积分10
5秒前
飞翔的西红柿完成签到,获得积分10
5秒前
xzy完成签到,获得积分10
5秒前
L.发布了新的文献求助20
6秒前
Verdigris完成签到,获得积分10
7秒前
cindy完成签到,获得积分10
7秒前
研友_VZG7GZ应助愉快彩虹采纳,获得10
7秒前
金色热浪完成签到 ,获得积分10
7秒前
快去读文献完成签到,获得积分20
7秒前
斯文静曼完成签到,获得积分10
7秒前
7秒前
7秒前
拼搏思卉关注了科研通微信公众号
8秒前
8秒前
liudiqiu应助酷酷的起眸采纳,获得10
8秒前
研友_8yN60L发布了新的文献求助10
8秒前
所所应助VDC采纳,获得10
8秒前
xxq发布了新的文献求助30
8秒前
xzy发布了新的文献求助20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759