Traffic and Computation Co-Offloading With Reinforcement Learning in Fog Computing for Industrial Applications

计算机科学 计算卸载 强化学习 分布式计算 移动边缘计算 马尔可夫决策过程 调度(生产过程) 瓶颈 计算机网络 云计算 供应 移动设备 边缘计算 服务器 马尔可夫过程 人工智能 嵌入式系统 工程类 操作系统 统计 数学 运营管理
作者
Yixuan Wang,Kun Wang,Huawei Huang,Toshiaki Miyazaki,Song Guo
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 976-986 被引量:198
标识
DOI:10.1109/tii.2018.2883991
摘要

In the past decade, network data communication has experienced a rapid growth, which has led to explosive congestion in heterogeneous networks. Moreover, the emerging industrial applications, such as automatic driving put forward higher requirements on both networks and devices. On the contrary, running computation-intensive industrial applications locally are constrained by the limited resources of devices. Correspondingly, fog computing has recently emerged to reduce the congestion of content-centric networks. It has proven to be a good way in industry and traffic for reducing network delay and processing time. In addition, device-to-device offloading is viewed as a promising paradigm to transmit network data in mobile environment, especially for autodriving vehicles. In this paper, jointly taking both the network traffic and computation workload of industrial traffic into consideration, we explore a fundamental tradeoff between energy consumption and service delay when provisioning mobile services in vehicular networks. In particular, when the available resource in mobile vehicles becomes a bottleneck, we propose a novel model to depict the users' willingness of contributing their resources to the public. We then formulate a cost minimization problem by exploiting the framework of Markov decision progress (MDP) and propose the dynamic reinforcement learning scheduling algorithm and the deep dynamic scheduling algorithm to solve the offloading decision problem. By adopting different mobile trajectory traces, we conduct extensive simulations to evaluate the performance of the proposed algorithms. The results show that our proposed algorithms outperform other benchmark schemes in the mobile edge networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助小蚂蚁采纳,获得10
刚刚
小童发布了新的文献求助30
1秒前
龙腾虎跃发布了新的文献求助10
1秒前
聪明海云发布了新的文献求助10
2秒前
刻苦的旺仔完成签到,获得积分10
2秒前
2秒前
xx发布了新的文献求助10
2秒前
煎蛋完成签到,获得积分10
3秒前
6秒前
今后应助周至采纳,获得10
6秒前
晓雅发布了新的文献求助10
6秒前
ptalala发布了新的文献求助10
6秒前
8秒前
哎嘿发布了新的文献求助10
8秒前
Mrsummer发布了新的文献求助10
9秒前
idannn完成签到,获得积分10
10秒前
耿耿完成签到,获得积分20
10秒前
22222发布了新的文献求助10
11秒前
结实大门发布了新的文献求助10
11秒前
石董宝宝完成签到,获得积分10
11秒前
木槿完成签到,获得积分10
12秒前
仁爱太阳完成签到,获得积分10
13秒前
13秒前
zt发布了新的文献求助10
14秒前
15秒前
曾经大地发布了新的文献求助10
15秒前
buno应助Mrsummer采纳,获得10
15秒前
15秒前
再睡十分钟完成签到,获得积分10
15秒前
16秒前
18秒前
科研通AI2S应助扎根采纳,获得150
18秒前
阿斯顿完成签到,获得积分10
18秒前
18秒前
罗罗luoluo发布了新的文献求助10
18秒前
Roger发布了新的文献求助10
19秒前
ptalala发布了新的文献求助20
19秒前
19秒前
19秒前
地瓜发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588751
求助须知:如何正确求助?哪些是违规求助? 4671674
关于积分的说明 14788516
捐赠科研通 4626078
什么是DOI,文献DOI怎么找? 2531920
邀请新用户注册赠送积分活动 1500505
关于科研通互助平台的介绍 1468329