Traffic and Computation Co-Offloading With Reinforcement Learning in Fog Computing for Industrial Applications

计算机科学 计算卸载 强化学习 分布式计算 移动边缘计算 马尔可夫决策过程 调度(生产过程) 瓶颈 计算机网络 云计算 供应 移动设备 边缘计算 服务器 马尔可夫过程 人工智能 嵌入式系统 工程类 操作系统 统计 数学 运营管理
作者
Yixuan Wang,Kun Wang,Huawei Huang,Toshiaki Miyazaki,Song Guo
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 976-986 被引量:198
标识
DOI:10.1109/tii.2018.2883991
摘要

In the past decade, network data communication has experienced a rapid growth, which has led to explosive congestion in heterogeneous networks. Moreover, the emerging industrial applications, such as automatic driving put forward higher requirements on both networks and devices. On the contrary, running computation-intensive industrial applications locally are constrained by the limited resources of devices. Correspondingly, fog computing has recently emerged to reduce the congestion of content-centric networks. It has proven to be a good way in industry and traffic for reducing network delay and processing time. In addition, device-to-device offloading is viewed as a promising paradigm to transmit network data in mobile environment, especially for autodriving vehicles. In this paper, jointly taking both the network traffic and computation workload of industrial traffic into consideration, we explore a fundamental tradeoff between energy consumption and service delay when provisioning mobile services in vehicular networks. In particular, when the available resource in mobile vehicles becomes a bottleneck, we propose a novel model to depict the users' willingness of contributing their resources to the public. We then formulate a cost minimization problem by exploiting the framework of Markov decision progress (MDP) and propose the dynamic reinforcement learning scheduling algorithm and the deep dynamic scheduling algorithm to solve the offloading decision problem. By adopting different mobile trajectory traces, we conduct extensive simulations to evaluate the performance of the proposed algorithms. The results show that our proposed algorithms outperform other benchmark schemes in the mobile edge networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻星辰完成签到,获得积分10
刚刚
熙熙完成签到,获得积分10
刚刚
1秒前
苏格拉底的嘲笑完成签到,获得积分10
1秒前
郭亚楠完成签到,获得积分10
2秒前
pureivy22完成签到 ,获得积分10
2秒前
zhx完成签到,获得积分10
4秒前
4秒前
碧蓝雁风完成签到 ,获得积分10
4秒前
大军门诊完成签到,获得积分10
5秒前
陶醉的又夏完成签到 ,获得积分10
5秒前
5秒前
7秒前
刘wt发布了新的文献求助10
7秒前
Alex完成签到,获得积分10
7秒前
8秒前
8秒前
qwe完成签到,获得积分20
8秒前
虚幻龙猫完成签到,获得积分10
9秒前
清清完成签到,获得积分10
9秒前
wpybird完成签到,获得积分10
9秒前
小茵茵完成签到,获得积分10
10秒前
dd99081完成签到,获得积分10
10秒前
科研通AI2S应助DZN采纳,获得10
10秒前
陈陈发布了新的文献求助10
11秒前
王旭智完成签到,获得积分10
11秒前
杲杲完成签到 ,获得积分10
11秒前
善学以致用应助超级尔白采纳,获得10
11秒前
迷你的百川完成签到,获得积分10
12秒前
12秒前
无私的颤完成签到,获得积分10
13秒前
WW完成签到,获得积分10
13秒前
13秒前
14秒前
子蓼完成签到 ,获得积分10
14秒前
贰鸟应助冉亦采纳,获得20
14秒前
禹晓兰发布了新的文献求助10
15秒前
15秒前
YangSY完成签到,获得积分10
15秒前
刘wt完成签到,获得积分10
17秒前
高分求助中
Evolution 10000
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158796
求助须知:如何正确求助?哪些是违规求助? 2810007
关于积分的说明 7885064
捐赠科研通 2468748
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012