Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes

材料科学 合金 间质缺损 高熵合金 氧化物 叠加断层 层错能 极限抗拉强度 打滑(空气动力学) 氧气 位错 延展性(地球科学) 兴奋剂 冶金 复合材料 蠕动 热力学 化学 有机化学 物理 光电子学
作者
Zhifeng Lei,Xiongjun Liu,Yuan Wu,Hui Wang,Suihe Jiang,Shudao Wang,Xidong Hui,Yidong Wu,Baptiste Gault,Paraskevas Kontis,Dierk Raabe,Lin Gu,Qinghua Zhang,Houwen Chen,Hongtao Wang,Jiabin Liu,Ke An,Qiaoshi Zeng,T.G. Nieh,Zhaoping Lü
出处
期刊:Nature [Springer Nature]
卷期号:563 (7732): 546-550 被引量:1590
标识
DOI:10.1038/s41586-018-0685-y
摘要

Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle1–3. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening4,5, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs)6–10. The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength–ductility trade-off11. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs12, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank–Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations13 do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials. Ordered oxygen complexes in high-entropy alloys enhance both strength and ductility in these compositionally complex solid solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王乾宇发布了新的文献求助10
1秒前
1秒前
1秒前
科研通AI6.1应助why采纳,获得10
1秒前
北辰发布了新的文献求助10
1秒前
sunnn发布了新的文献求助10
1秒前
星渊应助红影采纳,获得10
1秒前
科研通AI6.1应助梦天采纳,获得10
1秒前
baozeNG发布了新的文献求助10
1秒前
灰光呀发布了新的文献求助10
1秒前
2秒前
2秒前
丘比特应助腼腆的斓采纳,获得10
3秒前
Orange应助saluo采纳,获得10
3秒前
舒服的善若完成签到 ,获得积分10
3秒前
善学以致用应助冰可乐采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
机灵的安南完成签到 ,获得积分10
4秒前
虚心绿草完成签到,获得积分10
4秒前
DANK1NG发布了新的文献求助10
5秒前
buqi完成签到,获得积分10
5秒前
5秒前
Orange应助哈哈哈采纳,获得30
5秒前
6秒前
6秒前
猪猪hero发布了新的文献求助30
6秒前
天天都肚子疼完成签到,获得积分10
6秒前
6秒前
困困发布了新的文献求助10
6秒前
slx发布了新的文献求助10
7秒前
纯懿发布了新的文献求助30
7秒前
7秒前
中岛悠斗发布了新的文献求助10
7秒前
王月关注了科研通微信公众号
8秒前
8秒前
清明完成签到,获得积分10
8秒前
ff发布了新的文献求助10
8秒前
9秒前
lxl完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768619
求助须知:如何正确求助?哪些是违规求助? 5576280
关于积分的说明 15419148
捐赠科研通 4902454
什么是DOI,文献DOI怎么找? 2637767
邀请新用户注册赠送积分活动 1585694
关于科研通互助平台的介绍 1540805