Image–text sentiment analysis via deep multimodal attentive fusion

计算机科学 情绪分析 人工智能 融合 图像融合 深度学习 自然语言处理 图像(数学) 模式识别(心理学) 语言学 哲学
作者
Feiran Huang,Xiaoming Zhang,Zhonghua Zhao,Jie Xu,Zhoujun Li
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:167: 26-37 被引量:245
标识
DOI:10.1016/j.knosys.2019.01.019
摘要

Sentiment analysis of social media data is crucial to understand people’s position, attitude, and opinion toward a certain event, which has many applications such as election prediction and product evaluation. Though great effort has been devoted to the single modality (image or text), less effort is paid to the joint analysis of multimodal data in social media. Most of the existing methods for multimodal sentiment analysis simply combine different data modalities, which results in dissatisfying performance on sentiment classification. In this paper, we propose a novel image–text sentiment analysis model, i.e., Deep Multimodal Attentive Fusion (DMAF), to exploit the discriminative features and the internal correlation between visual and semantic contents with a mixed fusion framework for sentiment analysis. Specifically, to automatically focus on discriminative regions and important words which are most related to the sentiment, two separate unimodal attention models are proposed to learn effective emotion classifiers for visual and textual modality respectively. Then, an intermediate fusion-based multimodal attention model is proposed to exploit the internal correlation between visual and textual features for joint sentiment classification. Finally, a late fusion scheme is applied to combine the three attention models for sentiment prediction. Extensive experiments are conducted to demonstrate the effectiveness of our approach on both weakly labeled and manually labeled datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妙松发布了新的文献求助10
1秒前
2秒前
2秒前
整齐岩完成签到,获得积分10
2秒前
jackdawjo发布了新的文献求助10
2秒前
3秒前
3秒前
任一笑发布了新的文献求助10
4秒前
bela发布了新的文献求助20
5秒前
我是老大应助喜悦的威采纳,获得10
5秒前
Liu完成签到,获得积分10
5秒前
5秒前
赘婿应助白潇潇采纳,获得10
6秒前
zhu发布了新的文献求助20
6秒前
FashionBoy应助吃饭饭采纳,获得10
6秒前
韩飞发布了新的文献求助10
8秒前
8秒前
乖猫要努力应助w1采纳,获得10
8秒前
香蕉觅云应助cfer采纳,获得10
8秒前
可可发布了新的文献求助10
8秒前
64658应助虚幻初之采纳,获得10
9秒前
10秒前
zhn完成签到,获得积分20
11秒前
香蕉觅云应助mym采纳,获得30
12秒前
12秒前
任一笑完成签到,获得积分20
13秒前
小马发布了新的文献求助10
13秒前
SciGPT应助杨桃采纳,获得10
14秒前
搜集达人应助坚强的严青采纳,获得10
14秒前
宇宙尽头的餐馆完成签到,获得积分10
15秒前
jackdawjo完成签到,获得积分10
16秒前
魔猿应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
17秒前
柯一一应助高跟鞋陈煋采纳,获得10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975658
求助须知:如何正确求助?哪些是违规求助? 3519986
关于积分的说明 11200481
捐赠科研通 3256410
什么是DOI,文献DOI怎么找? 1798247
邀请新用户注册赠送积分活动 877490
科研通“疑难数据库(出版商)”最低求助积分说明 806376