Image–text sentiment analysis via deep multimodal attentive fusion

计算机科学 情绪分析 判别式 人工智能 利用 模态(人机交互) 光学(聚焦) 典型相关 社会化媒体 模式 自然语言处理 模式识别(心理学) 机器学习 社会学 社会科学 万维网 物理 光学 计算机安全
作者
Feiran Huang,Xiaoming Zhang,Zhong-Qiu Zhao,Jie Xu,Zhoujun Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:167: 26-37 被引量:137
标识
DOI:10.1016/j.knosys.2019.01.019
摘要

Sentiment analysis of social media data is crucial to understand people’s position, attitude, and opinion toward a certain event, which has many applications such as election prediction and product evaluation. Though great effort has been devoted to the single modality (image or text), less effort is paid to the joint analysis of multimodal data in social media. Most of the existing methods for multimodal sentiment analysis simply combine different data modalities, which results in dissatisfying performance on sentiment classification. In this paper, we propose a novel image–text sentiment analysis model, i.e., Deep Multimodal Attentive Fusion (DMAF), to exploit the discriminative features and the internal correlation between visual and semantic contents with a mixed fusion framework for sentiment analysis. Specifically, to automatically focus on discriminative regions and important words which are most related to the sentiment, two separate unimodal attention models are proposed to learn effective emotion classifiers for visual and textual modality respectively. Then, an intermediate fusion-based multimodal attention model is proposed to exploit the internal correlation between visual and textual features for joint sentiment classification. Finally, a late fusion scheme is applied to combine the three attention models for sentiment prediction. Extensive experiments are conducted to demonstrate the effectiveness of our approach on both weakly labeled and manually labeled datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wcy关注了科研通微信公众号
刚刚
1秒前
1秒前
CipherSage应助爱喝冰可乐采纳,获得10
2秒前
2秒前
bdvdsrwteges完成签到,获得积分10
2秒前
鱼雷完成签到,获得积分10
3秒前
3秒前
天天快乐应助喜洋洋采纳,获得10
3秒前
PANSIXUAN完成签到 ,获得积分10
4秒前
善良香岚发布了新的文献求助10
4秒前
4秒前
huizi完成签到,获得积分20
4秒前
RichardZ完成签到,获得积分10
4秒前
4秒前
左左发布了新的文献求助10
5秒前
执着的怜寒应助哈哈哈haha采纳,获得40
5秒前
Cassie完成签到 ,获得积分10
6秒前
6秒前
雄i完成签到,获得积分10
6秒前
Chenly完成签到,获得积分10
7秒前
科目三应助韭黄采纳,获得10
7秒前
7秒前
轻松笙发布了新的文献求助10
7秒前
9秒前
9秒前
a1oft发布了新的文献求助10
10秒前
觅桃乌龙完成签到,获得积分10
10秒前
11秒前
melodyezi发布了新的文献求助10
12秒前
12秒前
FFFFFFF应助柚子采纳,获得10
12秒前
9℃发布了新的文献求助10
12秒前
MailkMonk发布了新的文献求助10
12秒前
ZQ完成签到,获得积分10
12秒前
12秒前
wcy发布了新的文献求助10
13秒前
13秒前
尹博士完成签到,获得积分10
13秒前
迟大猫应助周士乐采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759