Image–text sentiment analysis via deep multimodal attentive fusion

计算机科学 情绪分析 判别式 人工智能 利用 模态(人机交互) 光学(聚焦) 典型相关 社会化媒体 模式 自然语言处理 模式识别(心理学) 机器学习 社会学 社会科学 万维网 物理 光学 计算机安全
作者
Feiran Huang,Xiaoming Zhang,Zhong-Qiu Zhao,Jie Xu,Zhoujun Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:167: 26-37 被引量:137
标识
DOI:10.1016/j.knosys.2019.01.019
摘要

Sentiment analysis of social media data is crucial to understand people’s position, attitude, and opinion toward a certain event, which has many applications such as election prediction and product evaluation. Though great effort has been devoted to the single modality (image or text), less effort is paid to the joint analysis of multimodal data in social media. Most of the existing methods for multimodal sentiment analysis simply combine different data modalities, which results in dissatisfying performance on sentiment classification. In this paper, we propose a novel image–text sentiment analysis model, i.e., Deep Multimodal Attentive Fusion (DMAF), to exploit the discriminative features and the internal correlation between visual and semantic contents with a mixed fusion framework for sentiment analysis. Specifically, to automatically focus on discriminative regions and important words which are most related to the sentiment, two separate unimodal attention models are proposed to learn effective emotion classifiers for visual and textual modality respectively. Then, an intermediate fusion-based multimodal attention model is proposed to exploit the internal correlation between visual and textual features for joint sentiment classification. Finally, a late fusion scheme is applied to combine the three attention models for sentiment prediction. Extensive experiments are conducted to demonstrate the effectiveness of our approach on both weakly labeled and manually labeled datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率尔琴发布了新的文献求助10
1秒前
可爱的函函应助sss采纳,获得10
2秒前
wufang完成签到,获得积分10
3秒前
3秒前
一二三发布了新的文献求助10
3秒前
CDQ完成签到,获得积分10
4秒前
keke完成签到,获得积分10
5秒前
5秒前
天天快乐应助甜甜戎采纳,获得10
5秒前
7秒前
烟雨平生完成签到,获得积分10
7秒前
10秒前
123驳回了爆米花应助
10秒前
11秒前
11秒前
11秒前
13秒前
sharry47关注了科研通微信公众号
14秒前
酷酷的穆完成签到,获得积分10
15秒前
16秒前
古的古的应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
17秒前
李健应助科研通管家采纳,获得10
17秒前
汎影发布了新的文献求助10
17秒前
222完成签到,获得积分10
17秒前
古的古的应助科研通管家采纳,获得50
17秒前
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
17秒前
August完成签到,获得积分10
18秒前
19秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137930
求助须知:如何正确求助?哪些是违规求助? 2788832
关于积分的说明 7788793
捐赠科研通 2445241
什么是DOI,文献DOI怎么找? 1300236
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046