Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data

卷积神经网络 计算机科学 人工智能 分割 模式识别(心理学) 深度学习 特征提取 可用性 图像处理 图像分割 特征(语言学) 放射科 医学 图像(数学) 人机交互 哲学 语言学
作者
Jiří Chmelík,Roman Jakubíček,Petr Walek,Jiří Jan,Petr Ouředníček,Lukáš Lambert,Elena Amadori,Giampaolo Gavelli
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:49: 76-88 被引量:74
标识
DOI:10.1016/j.media.2018.07.008
摘要

This paper aims to address the segmentation and classification of lytic and sclerotic metastatic lesions that are difficult to define by using spinal 3D Computed Tomography (CT) images obtained from highly pathologically affected cases. As the lesions are ill-defined and consequently it is difficult to find relevant image features that would enable detection and classification of lesions by classical methods of texture and shape analysis, the problem is solved by automatic feature extraction provided by a deep Convolutional Neural Network (CNN). Our main contributions are: (i) individual CNN architecture, and pre-processing steps that are dependent on a patient data and a scan protocol - it enables work with different types of CT scans; (ii) medial axis transform (MAT) post-processing for shape simplification of segmented lesion candidates with Random Forest (RF) based meta-analysis; and (iii) usability of the proposed method on whole-spine CTs (cervical, thoracic, lumbar), which is not treated in other published methods (they work with thoracolumbar segments of spine only). Our proposed method has been tested on our own dataset annotated by two mutually independent radiologists and has been compared to other published methods. This work is part of the ongoing complex project dealing with spine analysis and spine lesion longitudinal studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助称心的乘云采纳,获得10
刚刚
1秒前
24豆发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
haojiaolv完成签到,获得积分10
3秒前
4秒前
4秒前
马潇完成签到 ,获得积分20
5秒前
6秒前
xiaoshi完成签到,获得积分10
6秒前
6秒前
meta完成签到,获得积分10
7秒前
lin发布了新的文献求助10
7秒前
NexusExplorer应助周周采纳,获得10
7秒前
宁人发布了新的文献求助10
7秒前
357完成签到 ,获得积分20
8秒前
8秒前
qwe31533发布了新的文献求助30
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
强子今天读文献了嘛完成签到,获得积分10
12秒前
浮浮世世发布了新的文献求助10
12秒前
12秒前
CTtoF完成签到,获得积分10
12秒前
13秒前
huanger完成签到,获得积分0
14秒前
15秒前
harrison完成签到,获得积分20
15秒前
狂野未来发布了新的文献求助10
16秒前
花露水完成签到,获得积分20
16秒前
16秒前
17秒前
小蘑菇应助咔咔采纳,获得10
19秒前
qzp发布了新的文献求助10
19秒前
leaolf应助称心曼安采纳,获得20
19秒前
顺心的巨人完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513