Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data

卷积神经网络 计算机科学 人工智能 分割 模式识别(心理学) 深度学习 特征提取 可用性 图像处理 图像分割 特征(语言学) 放射科 医学 图像(数学) 语言学 哲学 人机交互
作者
Jiří Chmelík,Roman Jakubíček,Petr Walek,Jiří Jan,Petr Ouředníček,Lukáš Lambert,Elena Amadori,Giampaolo Gavelli
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:49: 76-88 被引量:74
标识
DOI:10.1016/j.media.2018.07.008
摘要

This paper aims to address the segmentation and classification of lytic and sclerotic metastatic lesions that are difficult to define by using spinal 3D Computed Tomography (CT) images obtained from highly pathologically affected cases. As the lesions are ill-defined and consequently it is difficult to find relevant image features that would enable detection and classification of lesions by classical methods of texture and shape analysis, the problem is solved by automatic feature extraction provided by a deep Convolutional Neural Network (CNN). Our main contributions are: (i) individual CNN architecture, and pre-processing steps that are dependent on a patient data and a scan protocol - it enables work with different types of CT scans; (ii) medial axis transform (MAT) post-processing for shape simplification of segmented lesion candidates with Random Forest (RF) based meta-analysis; and (iii) usability of the proposed method on whole-spine CTs (cervical, thoracic, lumbar), which is not treated in other published methods (they work with thoracolumbar segments of spine only). Our proposed method has been tested on our own dataset annotated by two mutually independent radiologists and has been compared to other published methods. This work is part of the ongoing complex project dealing with spine analysis and spine lesion longitudinal studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Shirley发布了新的文献求助30
1秒前
Gauss应助Dr大壮采纳,获得30
1秒前
1秒前
科研通AI5应助朴实雨竹采纳,获得10
3秒前
3秒前
Zzy22发布了新的文献求助10
3秒前
4秒前
huche发布了新的文献求助10
5秒前
大白菜完成签到,获得积分10
6秒前
6秒前
6秒前
嘻嘻哈哈发布了新的文献求助10
6秒前
ding应助凤凰山采纳,获得10
7秒前
开心问夏发布了新的文献求助10
7秒前
SYLH应助tina_lulu_21采纳,获得20
8秒前
8秒前
独特的友琴完成签到 ,获得积分10
8秒前
SiO2发布了新的文献求助10
9秒前
9秒前
忧虑的孤萍完成签到,获得积分10
11秒前
Shirley完成签到,获得积分10
11秒前
wdw2501发布了新的文献求助10
11秒前
33发布了新的文献求助10
11秒前
晴天的雨发布了新的文献求助10
12秒前
务实青筠完成签到 ,获得积分10
12秒前
顾矜应助AoAoo采纳,获得10
12秒前
上官若男应助健壮的语雪采纳,获得10
12秒前
12秒前
JamesPei应助bx采纳,获得10
13秒前
单身的青柏完成签到 ,获得积分10
14秒前
15秒前
DLL完成签到 ,获得积分10
15秒前
bkagyin应助李小树采纳,获得10
16秒前
16秒前
陆吉完成签到,获得积分10
16秒前
lin完成签到,获得积分10
16秒前
百灵鸟发布了新的文献求助10
16秒前
17秒前
owoow发布了新的文献求助10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967809
求助须知:如何正确求助?哪些是违规求助? 3512946
关于积分的说明 11165553
捐赠科研通 3247977
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578