压电
材料科学
超材料
灵活性(工程)
各向异性
纳米发生器
压电系数
能量收集
压力(语言学)
电压
纳米复合材料
声学
光电子学
纳米技术
复合材料
电气工程
物理
光学
工程类
统计
哲学
功率(物理)
量子力学
语言学
数学
作者
Huachen Cui,Ryan Hensleigh,Desheng Yao,Deepam Maurya,Prashant Kumar,Min‐Gyu Kang,Shashank Priya,Xiaoyu Zheng
出处
期刊:Nature Materials
[Springer Nature]
日期:2019-01-21
卷期号:18 (3): 234-241
被引量:362
标识
DOI:10.1038/s41563-018-0268-1
摘要
Piezoelectric coefficients are constrained by the intrinsic crystal structure of the constituent material. Here we describe design and manufacturing routes to previously inaccessible classes of piezoelectric materials that have arbitrary piezoelectric coefficient tensors. Our scheme is based on the manipulation of electric displacement maps from families of structural cell patterns. We implement our designs by additively manufacturing free-form, perovskite-based piezoelectric nanocomposites with complex three-dimensional architectures. The resulting voltage response of the activated piezoelectric metamaterials at a given mode can be selectively suppressed, reversed or enhanced with applied stress. Additionally, these electromechanical metamaterials achieve high specific piezoelectric constants and tailorable flexibility using only a fraction of their parent materials. This strategy may be applied to create the next generation of intelligent infrastructure, able to perform a variety of structural and functional tasks, including simultaneous impact absorption and monitoring, three-dimensional pressure mapping and directionality detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI