亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Marginal singularity and the benefits of labels in covariate-shift

协变量 极小极大 数学 非参数统计 边际分布 传输(计算) 样本量测定 分布(数学) 学习迁移 分类器(UML) 联合概率分布 概率分布 统计 样品(材料) 计量经济学 人工智能 计算机科学 数学优化 随机变量 数学分析 并行计算 化学 色谱法
作者
Samory Kpotufe,Guillaume Martinet
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:49 (6) 被引量:17
标识
DOI:10.1214/21-aos2084
摘要

Transfer Learning addresses common situations in Machine Leaning where little or no labeled data is available for a target prediction problem—corresponding to a distribution Q, but much labeled data is available from some related but different data distribution P. This work is concerned with the fundamental limits of transfer, that is, the limits in target performance in terms of (1) sample sizes from P and Q, and (2) differences in data distributions P, Q. In particular, we aim to address practical questions such as how much target data from Q is sufficient given a certain amount of related data from P, and how to optimally sample such target data for labeling. We present new minimax results for transfer in nonparametric classification (i.e., for situations where little is known about the target classifier), under the common assumption that the marginal distributions of covariates differ between P and Q (often termed covariate-shift). Our results are first to concisely capture the relative benefits of source and target labeled data in these settings through information-theoretic limits. Namely, we show that the benefits of target labels are tightly controlled by a transfer-exponent γ that encodes how singular Q is locally with respect to P, and interestingly paints a more favorable picture of transfer than what might be believed from insights from previous work. In fact, while previous work rely largely on refinements of traditional metrics and divergences between distributions, and often only yield a coarse view of when transfer is possible or not, our analysis—in terms of γ—reveals a continuum of new regimes ranging from easy to hard transfer. We then address the practical question of how to efficiently sample target data to label, by showing that a recently proposed semi-supervised procedure—based on k-NN classification, can be refined to adapt to unknown γ and, therefore, requests target labels only when beneficial, while achieving nearly minimax-optimal transfer rates without knowledge of distributional parameters. Of independent interest, we obtain new minimax-optimality results for vanilla k-NN classification in regimes with nonuniform marginals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奈思完成签到 ,获得积分10
1秒前
121关闭了121文献求助
1秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
12秒前
莉莉斯完成签到 ,获得积分10
12秒前
13秒前
科研通AI6应助笑点低涵雁采纳,获得10
13秒前
科研通AI2S应助121采纳,获得10
17秒前
科研通AI2S应助121采纳,获得10
17秒前
传奇3应助121采纳,获得10
17秒前
小耗子发布了新的文献求助10
18秒前
19秒前
23秒前
科研通AI6应助笑点低涵雁采纳,获得10
25秒前
Cookie发布了新的文献求助10
25秒前
笑声像鸭子叫完成签到 ,获得积分10
28秒前
闲鱼耶鹤完成签到 ,获得积分10
28秒前
科目三应助绿水晶采纳,获得10
30秒前
32秒前
34秒前
34秒前
121发布了新的文献求助10
35秒前
蜉蝣完成签到 ,获得积分10
35秒前
Hello应助pishuang采纳,获得10
36秒前
papercloud完成签到 ,获得积分20
37秒前
38秒前
ddddddl发布了新的文献求助10
39秒前
绿水晶发布了新的文献求助10
44秒前
47秒前
科研通AI6应助笑点低涵雁采纳,获得10
47秒前
周游完成签到 ,获得积分10
47秒前
小张完成签到 ,获得积分10
49秒前
50秒前
小丸子和zz完成签到 ,获得积分10
51秒前
Eileen完成签到 ,获得积分10
52秒前
Jasper应助清脆的迎松采纳,获得10
53秒前
Huangtao250发布了新的文献求助10
55秒前
ddddddl完成签到,获得积分20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463110
求助须知:如何正确求助?哪些是违规求助? 4567902
关于积分的说明 14311936
捐赠科研通 4493710
什么是DOI,文献DOI怎么找? 2461843
邀请新用户注册赠送积分活动 1450876
关于科研通互助平台的介绍 1426037