Marginal singularity and the benefits of labels in covariate-shift

协变量 极小极大 数学 非参数统计 边际分布 传输(计算) 样本量测定 分布(数学) 学习迁移 分类器(UML) 联合概率分布 概率分布 统计 样品(材料) 计量经济学 人工智能 计算机科学 数学优化 随机变量 数学分析 色谱法 并行计算 化学
作者
Samory Kpotufe,Guillaume Martinet
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:49 (6) 被引量:17
标识
DOI:10.1214/21-aos2084
摘要

Transfer Learning addresses common situations in Machine Leaning where little or no labeled data is available for a target prediction problem—corresponding to a distribution Q, but much labeled data is available from some related but different data distribution P. This work is concerned with the fundamental limits of transfer, that is, the limits in target performance in terms of (1) sample sizes from P and Q, and (2) differences in data distributions P, Q. In particular, we aim to address practical questions such as how much target data from Q is sufficient given a certain amount of related data from P, and how to optimally sample such target data for labeling. We present new minimax results for transfer in nonparametric classification (i.e., for situations where little is known about the target classifier), under the common assumption that the marginal distributions of covariates differ between P and Q (often termed covariate-shift). Our results are first to concisely capture the relative benefits of source and target labeled data in these settings through information-theoretic limits. Namely, we show that the benefits of target labels are tightly controlled by a transfer-exponent γ that encodes how singular Q is locally with respect to P, and interestingly paints a more favorable picture of transfer than what might be believed from insights from previous work. In fact, while previous work rely largely on refinements of traditional metrics and divergences between distributions, and often only yield a coarse view of when transfer is possible or not, our analysis—in terms of γ—reveals a continuum of new regimes ranging from easy to hard transfer. We then address the practical question of how to efficiently sample target data to label, by showing that a recently proposed semi-supervised procedure—based on k-NN classification, can be refined to adapt to unknown γ and, therefore, requests target labels only when beneficial, while achieving nearly minimax-optimal transfer rates without knowledge of distributional parameters. Of independent interest, we obtain new minimax-optimality results for vanilla k-NN classification in regimes with nonuniform marginals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南宫冰夏发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
郭惠智完成签到,获得积分10
2秒前
仲半邪完成签到,获得积分10
3秒前
3秒前
xavier发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
5秒前
5秒前
碗糕发布了新的文献求助30
6秒前
沉123发布了新的文献求助10
6秒前
orixero应助倩迷谜采纳,获得10
6秒前
7秒前
向上的小v完成签到 ,获得积分10
7秒前
SciGPT应助xy采纳,获得10
7秒前
2000dw完成签到,获得积分20
7秒前
谈理想发布了新的文献求助10
7秒前
勤奋尔冬完成签到 ,获得积分10
8秒前
8秒前
锅锅完成签到,获得积分10
8秒前
lilililili发布了新的文献求助10
8秒前
lx发布了新的文献求助10
9秒前
科目三应助不安的煜城采纳,获得30
9秒前
joshar发布了新的文献求助10
9秒前
jitianxing完成签到,获得积分10
10秒前
温谷完成签到,获得积分10
10秒前
SciGPT应助fusheng采纳,获得10
10秒前
青松果完成签到,获得积分10
10秒前
沉123完成签到,获得积分20
11秒前
微调发布了新的文献求助10
11秒前
11秒前
11秒前
铁路网125发布了新的文献求助10
11秒前
一次性过发布了新的文献求助20
11秒前
小赵发布了新的文献求助10
12秒前
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961321
求助须知:如何正确求助?哪些是违规求助? 3507666
关于积分的说明 11137254
捐赠科研通 3240099
什么是DOI,文献DOI怎么找? 1790749
邀请新用户注册赠送积分活动 872460
科研通“疑难数据库(出版商)”最低求助积分说明 803271