Marginal singularity and the benefits of labels in covariate-shift

协变量 极小极大 数学 非参数统计 边际分布 传输(计算) 样本量测定 分布(数学) 学习迁移 分类器(UML) 联合概率分布 概率分布 统计 样品(材料) 计量经济学 人工智能 计算机科学 数学优化 随机变量 数学分析 色谱法 并行计算 化学
作者
Samory Kpotufe,Guillaume Martinet
出处
期刊:Annals of Statistics [Institute of Mathematical Statistics]
卷期号:49 (6) 被引量:17
标识
DOI:10.1214/21-aos2084
摘要

Transfer Learning addresses common situations in Machine Leaning where little or no labeled data is available for a target prediction problem—corresponding to a distribution Q, but much labeled data is available from some related but different data distribution P. This work is concerned with the fundamental limits of transfer, that is, the limits in target performance in terms of (1) sample sizes from P and Q, and (2) differences in data distributions P, Q. In particular, we aim to address practical questions such as how much target data from Q is sufficient given a certain amount of related data from P, and how to optimally sample such target data for labeling. We present new minimax results for transfer in nonparametric classification (i.e., for situations where little is known about the target classifier), under the common assumption that the marginal distributions of covariates differ between P and Q (often termed covariate-shift). Our results are first to concisely capture the relative benefits of source and target labeled data in these settings through information-theoretic limits. Namely, we show that the benefits of target labels are tightly controlled by a transfer-exponent γ that encodes how singular Q is locally with respect to P, and interestingly paints a more favorable picture of transfer than what might be believed from insights from previous work. In fact, while previous work rely largely on refinements of traditional metrics and divergences between distributions, and often only yield a coarse view of when transfer is possible or not, our analysis—in terms of γ—reveals a continuum of new regimes ranging from easy to hard transfer. We then address the practical question of how to efficiently sample target data to label, by showing that a recently proposed semi-supervised procedure—based on k-NN classification, can be refined to adapt to unknown γ and, therefore, requests target labels only when beneficial, while achieving nearly minimax-optimal transfer rates without knowledge of distributional parameters. Of independent interest, we obtain new minimax-optimality results for vanilla k-NN classification in regimes with nonuniform marginals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洋洋爱吃枣完成签到 ,获得积分10
1秒前
环秋完成签到,获得积分0
2秒前
Jimmy_King完成签到,获得积分10
3秒前
潇洒友蕊完成签到 ,获得积分10
5秒前
知行者完成签到 ,获得积分10
6秒前
unfeeling8完成签到 ,获得积分10
15秒前
分风吹完成签到 ,获得积分10
18秒前
嘻嘻完成签到 ,获得积分10
18秒前
21秒前
Bond完成签到 ,获得积分10
22秒前
马哈茂德发布了新的文献求助30
27秒前
传奇3应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
cdercder应助科研通管家采纳,获得20
31秒前
FashionBoy应助科研通管家采纳,获得10
31秒前
vagabond完成签到 ,获得积分10
35秒前
烂漫的蜡烛完成签到 ,获得积分10
44秒前
自信放光芒~完成签到 ,获得积分10
46秒前
木木完成签到 ,获得积分10
51秒前
hhh123完成签到,获得积分10
53秒前
ESC惠子子子子子完成签到 ,获得积分10
55秒前
吕凯强完成签到 ,获得积分10
1分钟前
LJS完成签到,获得积分10
1分钟前
xianjingli完成签到,获得积分10
1分钟前
1分钟前
hu完成签到 ,获得积分10
1分钟前
葫芦芦芦完成签到 ,获得积分10
1分钟前
1分钟前
张宁波完成签到,获得积分10
1分钟前
1分钟前
kryptonite完成签到 ,获得积分10
1分钟前
SAINT完成签到 ,获得积分10
1分钟前
张同学快去做实验呀完成签到,获得积分10
1分钟前
minmin完成签到 ,获得积分10
1分钟前
卓初露完成签到 ,获得积分10
2分钟前
KKKZ完成签到,获得积分10
2分钟前
Daisy完成签到,获得积分10
2分钟前
李九妹完成签到 ,获得积分10
2分钟前
kyokyoro完成签到,获得积分10
2分钟前
summer完成签到,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671320
求助须知:如何正确求助?哪些是违规求助? 3228175
关于积分的说明 9778709
捐赠科研通 2938413
什么是DOI,文献DOI怎么找? 1610009
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 736020