Is it Safe to Drive? An Overview of Factors, Metrics, and Datasets for Driveability Assessment in Autonomous Driving

计算机科学 分类 机器学习 人工智能
作者
Junyao Guo,Unmesh Kurup,Mohak Shah
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:21 (8): 3135-3151 被引量:79
标识
DOI:10.1109/tits.2019.2926042
摘要

With recent advances in learning algorithms and hardware development, autonomous cars have shown promise when operating in structured environments under good driving conditions. However, for complex, cluttered, and unseen environments with high uncertainty, autonomous driving systems still frequently demonstrate erroneous or unexpected behaviors that could lead to catastrophic outcomes. Autonomous vehicles should ideally adapt to driving conditions; while this can be achieved through multiple routes, it would be beneficial as a first step to be able to characterize driveability in some quantified form. To this end, this paper aims to create a framework for investigating different factors that can impact driveability. Also, one of the main mechanisms to adapt autonomous driving systems to any driving condition is to be able to learn and generalize from representative scenarios. The machine learning algorithms that currently do so learn predominantly in a supervised manner and consequently need sufficient data for robust and efficient learning. Therefore, we also perform a comparative overview of 54 public driving datasets that enable learning and publish this dataset index at https://sites.google.com/view/driveability-survey-datasets. Specifically, we categorize the datasets according to the use cases and highlight the datasets that capture the complicated and hazardous driving conditions, which can be better used for training robust driving models. Furthermore, by discussions of what driving scenarios are not covered by the existing public datasets and what driveability factors need more investigation and data acquisition, this paper aims to encourage both targeted dataset collection and the proposal of novel driveability metrics that enhance the robustness of autonomous cars in adverse environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干的夏瑶完成签到 ,获得积分10
刚刚
紫米完成签到,获得积分10
刚刚
vagabond完成签到 ,获得积分10
8秒前
赵恶天发布了新的文献求助10
11秒前
迷蝴蝶完成签到,获得积分10
12秒前
www完成签到,获得积分10
13秒前
zzt应助111采纳,获得10
14秒前
囚穆完成签到 ,获得积分10
14秒前
依依完成签到 ,获得积分10
16秒前
23秒前
MZ完成签到,获得积分10
24秒前
赵恶天完成签到,获得积分10
25秒前
一颗辣白菜叶完成签到 ,获得积分10
27秒前
bestbanana发布了新的文献求助10
28秒前
30秒前
Mt完成签到,获得积分10
32秒前
32秒前
无限冰淇淋完成签到,获得积分10
33秒前
这课题真顺利完成签到,获得积分10
33秒前
飞翔的梦完成签到,获得积分10
34秒前
丘比特应助刘大恒采纳,获得10
35秒前
白大褂发布了新的文献求助10
36秒前
天马行空完成签到,获得积分10
37秒前
Wangying完成签到,获得积分10
39秒前
memore完成签到 ,获得积分10
41秒前
jinshijie完成签到 ,获得积分10
41秒前
ding应助bestbanana采纳,获得10
43秒前
忐忑的草丛完成签到,获得积分10
44秒前
集典完成签到 ,获得积分10
44秒前
45秒前
好的完成签到,获得积分10
45秒前
白茶的雪完成签到,获得积分10
49秒前
科研通AI2S应助迷蝴蝶采纳,获得30
49秒前
努力的科研小趴菜完成签到,获得积分10
52秒前
BettyNie完成签到 ,获得积分10
55秒前
白大褂完成签到,获得积分10
57秒前
优雅小橘子完成签到 ,获得积分10
57秒前
57秒前
炼丹炉完成签到,获得积分10
1分钟前
Shelley发布了新的文献求助10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137067
求助须知:如何正确求助?哪些是违规求助? 2788055
关于积分的说明 7784485
捐赠科研通 2444102
什么是DOI,文献DOI怎么找? 1299733
科研通“疑难数据库(出版商)”最低求助积分说明 625557
版权声明 601010