数学
极小极大
索波列夫空间
多重性(数学)
临界点(数学)
临界指数
类型(生物学)
数学分析
指数
功能(生物学)
指数型
指数衰减
指数函数
组合数学
几何学
物理
量子力学
数学优化
缩放比例
哲学
生物
进化生物学
语言学
生态学
作者
Yayi He,Gongbao Li,Shuangjie Peng
出处
期刊:Advanced Nonlinear Studies
[De Gruyter]
日期:2014-05-01
卷期号:14 (2): 483-510
被引量:153
标识
DOI:10.1515/ans-2014-0214
摘要
Abstract We study the concentration and multiplicity of weak solutions to the Kirchhoff type equation with critical Sobolev growth, where ε is a small positive parameter and a, b > 0 are constants, f ∈ C 1 (ℝ + ,ℝ) is subcritical, V : ℝ 3 → ℝ is a locally Hölder continuous function. We first prove that for ε 0 > 0 sufficiently small, the above problem has a weak solution u ε with exponential decay at infinity. Moreover, u ε concentrates around a local minimum point of V in Λ as ε → 0. With minimax theorems and Ljusternik-Schnirelmann theory, we also obtain multiple solutions by employing the topological construction of the set where the potential V(z) attains its minimum.
科研通智能强力驱动
Strongly Powered by AbleSci AI