A novel multi-step Q-learning method to improve data efficiency for deep reinforcement learning

计算机科学 强化学习 增强学习 人工智能 机器学习
作者
Yi Yuan,Zhu Liang Yu,Zhenghui Gu,Yao Yeboah,Wei Wu,Xinyang Deng,Yuanqing Li
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:175: 107-117 被引量:33
标识
DOI:10.1016/j.knosys.2019.03.018
摘要

Deep reinforcement learning (DRL) algorithms with experience replays have been used to solve many sequential learning problems. However, in practice, DRL algorithms still suffer from the data inefficiency problem, which limits their applicability in many scenarios, and renders them inefficient in solving real-world problems. To improve the data efficiency of DRL, in this paper, a new multi-step method is proposed. Unlike traditional algorithms, the proposed method uses a new return function, which alters the discount of future rewards while decreasing the impact of the immediate reward when selecting the current state action. This approach has the potential to improve the efficiency of reward data. By combining the proposed method with classic DRL algorithms, deep Q-networks (DQN) and double deep Q-networks (DDQN), two novel algorithms are proposed for improving the efficiency of learning from experience replay. The performance of the proposed algorithms, expected n-step DQN (EnDQN) and expected n-step DDQN (EnDDQN), are validated using two simulation environments, CartPole and DeepTraffic. The experimental results demonstrate that the proposed multi-step methods greatly improve the data efficiency of DRL agents while further improving the performance of existing classic DRL algorithms when incorporated into their training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RICK发布了新的文献求助10
刚刚
研友_VZG7GZ应助科研狗采纳,获得10
1秒前
无语的萤发布了新的文献求助10
1秒前
2秒前
机智毛豆发布了新的文献求助10
2秒前
快乐水完成签到,获得积分10
2秒前
3秒前
倒霉兔子完成签到,获得积分0
4秒前
4秒前
89757完成签到,获得积分10
4秒前
4秒前
佰特瑞完成签到,获得积分10
4秒前
4秒前
前行的灿发布了新的文献求助10
5秒前
Summer完成签到 ,获得积分10
5秒前
leiiiiiiii完成签到,获得积分10
5秒前
Zdh同学完成签到,获得积分10
6秒前
6秒前
学习完成签到,获得积分10
6秒前
爆米花应助施天问采纳,获得10
6秒前
科研通AI2S应助23533213采纳,获得10
7秒前
yuankeyi发布了新的文献求助10
7秒前
佰特瑞发布了新的文献求助10
8秒前
8秒前
小玉应助Bin_Liu采纳,获得10
8秒前
李爱国应助aaronpancn采纳,获得10
8秒前
俭朴夜雪发布了新的文献求助10
9秒前
小雕发布了新的文献求助10
9秒前
9秒前
默默的璎完成签到,获得积分10
10秒前
10秒前
月亮完成签到,获得积分20
10秒前
酷波er应助风中的太阳采纳,获得10
10秒前
脑洞疼应助妞妞采纳,获得10
11秒前
杨。。完成签到 ,获得积分10
11秒前
搞怪绿柳发布了新的文献求助10
11秒前
12秒前
帅气蓝完成签到,获得积分10
12秒前
12秒前
fengzi151完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009557
求助须知:如何正确求助?哪些是违规求助? 3549561
关于积分的说明 11302629
捐赠科研通 3284139
什么是DOI,文献DOI怎么找? 1810469
邀请新用户注册赠送积分活动 886322
科研通“疑难数据库(出版商)”最低求助积分说明 811345