(264) Altered Brain Network Topology in Chronic Low Back Pain Patients on Prescription Opioid Analgesics

医学 慢性疼痛 类阿片 药方 麻醉 拓扑(电路) 物理疗法 药理学 内科学 受体 数学 组合数学
作者
Behnaz Jarrahi,Sean Mackey
出处
期刊:The Journal of Pain [Elsevier]
卷期号:20 (4): S40-S40
标识
DOI:10.1016/j.jpain.2019.01.186
摘要

Opioid prescribing for chronic pain conditions such as Chronic Low Back Pain (CLBP) in the United States has increased substantially in the past two decades. However, the effects of opioid analgesics on the brain network topology in CLBP remains unknown. The present study therefore provides the first test of the hypothesis that opioid status impacts the activity of the whole-brain network using graph theory methods. Resting state fMRI data were collected on a 3T scanner from 10 CLBP patients on long-term opioid regimens (CLBP+; 5 males, mean age ± SD = 48.5 ± 14.8 years) and 10 matched opioid-naive CLBP patients (CLBP-, 5 males, mean age ± SD = 43.6 ± 12.6 years) according to a protocol approved by the Stanford IRB. Following image quality assurance in MRIQC, and preprocessing in SPM12, we performed graph theoretical network analysis using CONN toolbox. For each participant, global network efficiency — a graph theory measure for integrative capacity of complex systems, was calculated and correlated with individual differences in sensory pain scores from Short Form McGill Pain Questionnaire (SF-MPQ). We focused on global efficiency as it reflects effective information transfer (i.e., small-worldness) within a network of nodes (i.e., regions of interests) and edges (i.e., correlation). Results revealed that the global efficiency values were positively correlated with pain in CLBP- but not in CLBP+ (r = 0.49 vs r = - 0.06, p = 0.05). This suggests that as sensory dimension of the pain intensity increased, CLBP- exhibited more efficient information transfer across a network of brain regions, including the core nodes of the salience network (anterior insula), frontoparietal central executive network (dorsolateral prefrontal cortices), and bilateral sensorimotor networks. Follow up studies with larger sample size are required to corroborate these observations and to formulate appropriate strategies for opioid prescribing guidelines, accordingly. Supported by NIH P01AT006651, and NIH T32DA035165.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强小熊猫完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
zyl关闭了zyl文献求助
1秒前
今后应助追寻的飞柏采纳,获得10
2秒前
lemon完成签到,获得积分10
3秒前
3秒前
Twonej举报Dxxxjx求助涉嫌违规
4秒前
Lucky完成签到,获得积分10
4秒前
靓丽的怜雪完成签到,获得积分20
4秒前
情怀应助化学学渣采纳,获得10
4秒前
FashionBoy应助Yuanyuan采纳,获得10
5秒前
one发布了新的文献求助10
5秒前
6秒前
梓曦发布了新的文献求助10
6秒前
优美紫槐发布了新的文献求助10
6秒前
6秒前
彭于晏应助123456采纳,获得10
7秒前
8秒前
多情新蕾发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
萧瑟秋风今又是完成签到 ,获得积分10
8秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
SciGPT应助lyx采纳,获得10
12秒前
林一发布了新的文献求助10
12秒前
13秒前
旺仔糖发布了新的文献求助10
14秒前
碧蓝丹烟完成签到 ,获得积分10
14秒前
无极微光应助尖叫尖叫采纳,获得20
14秒前
上官若男应助优美紫槐采纳,获得10
15秒前
晨光发布了新的文献求助10
15秒前
贱小贱完成签到,获得积分0
16秒前
16秒前
暴走章鱼完成签到,获得积分10
17秒前
雷欣欣完成签到 ,获得积分10
17秒前
万能图书馆应助西西采纳,获得10
18秒前
无花果应助韩小小采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729634
求助须知:如何正确求助?哪些是违规求助? 5319737
关于积分的说明 15317209
捐赠科研通 4876640
什么是DOI,文献DOI怎么找? 2619450
邀请新用户注册赠送积分活动 1569001
关于科研通互助平台的介绍 1525547