Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis

过电位 电催化剂 析氧 催化作用 电解质 电化学 溶解 分解水 金属 材料科学 合金 化学工程 化学物理 无机化学 化学 冶金 物理化学 复合材料 电极 工程类 光催化 生物化学
作者
Yancai Yao,Sulei Hu,Wenxing Chen,Zheng‐Qing Huang,Wei-Chen Wei,Tao Yao,Ruirui Liu,Ketao Zang,Xiaoqian Wang,Geng Wu,Wenjuan Yuan,Tongwei Yuan,Bai-Quan Zhu,Wei Liu,Zhijun Li,Dongsheng He,Zhenggang Xue,Yu Wang,Xusheng Zheng,Juncai Dong
出处
期刊:Nature Catalysis [Springer Nature]
卷期号:2 (4): 304-313 被引量:1114
标识
DOI:10.1038/s41929-019-0246-2
摘要

Single-atom precious metal catalysts hold the promise of perfect atom utilization, yet control of their activity and stability remains challenging. Here we show that engineering the electronic structure of atomically dispersed Ru1 on metal supports via compressive strain boosts the kinetically sluggish electrocatalytic oxygen evolution reaction (OER), and mitigates the degradation of Ru-based electrocatalysts in an acidic electrolyte. We construct a series of alloy-supported Ru1 using different PtCu alloys through sequential acid etching and electrochemical leaching, and find a volcano relation between OER activity and the lattice constant of the PtCu alloys. Our best catalyst, Ru1–Pt3Cu, delivers 90 mV lower overpotential to reach a current density of 10 mA cm−2, and an order of magnitude longer lifetime over that of commercial RuO2. Density functional theory investigations reveal that the compressive strain of the Ptskin shell engineers the electronic structure of the Ru1, allowing optimized binding of oxygen species and better resistance to over-oxidation and dissolution. While Ru-based electrocatalysts are among the most active for acidic water oxidation, they suffer from severe deactivation. Now, Yuen Wu, Wei-Xue Li and co-workers report a core–shell Ru1–Pt3Cu catalyst with surface-dispersed Ru atoms for a highly active and stable oxygen evolution reaction in acid electrolyte.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
名副棋实发布了新的文献求助10
1秒前
1秒前
柳絮旭完成签到 ,获得积分10
1秒前
张建凯完成签到,获得积分10
1秒前
hx完成签到 ,获得积分10
2秒前
崔梦婷完成签到,获得积分10
2秒前
blank12完成签到,获得积分10
2秒前
feiyu完成签到,获得积分10
2秒前
斑马不一般完成签到,获得积分10
2秒前
fengfeng完成签到,获得积分10
3秒前
mr_beard完成签到 ,获得积分10
3秒前
陈慕枫完成签到,获得积分10
3秒前
宽宽完成签到,获得积分10
3秒前
zz完成签到,获得积分10
3秒前
独行者完成签到,获得积分10
3秒前
躲哪个草完成签到 ,获得积分10
3秒前
可可派完成签到,获得积分10
3秒前
狐尔莫发布了新的文献求助10
4秒前
隐形曼青应助高贵振家采纳,获得30
4秒前
深情安青应助77采纳,获得10
4秒前
bkagyin应助zhourenpeng采纳,获得10
5秒前
Xu完成签到,获得积分10
5秒前
rr完成签到,获得积分10
5秒前
zhengke924完成签到,获得积分10
5秒前
听雨完成签到,获得积分10
5秒前
胖胖胖胖完成签到,获得积分10
6秒前
6秒前
谦让雨柏完成签到 ,获得积分10
6秒前
上官若男应助keyanxiaobaishu采纳,获得10
6秒前
奋斗初南完成签到,获得积分10
6秒前
来来完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
7秒前
8秒前
七彩草履虫完成签到,获得积分10
8秒前
寒冷猫咪发布了新的文献求助10
8秒前
谦让的莆完成签到 ,获得积分10
9秒前
在水一方应助小畅采纳,获得10
9秒前
lixm发布了新的文献求助10
9秒前
蓝桥兰灯完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997