亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement Learning in Financial Markets

强化学习 盈利能力指数 外汇市场 证券交易所 交易成本 人工智能 交易数据 计算机科学 市场流动性 学习分类器系统 数据库事务 交易策略 机器学习 金融经济学 业务 财务 经济 汇率 数据库
作者
Terry Lingze Meng,Matloob Khushi
出处
期刊:Data [MDPI AG]
卷期号:4 (3): 110-110 被引量:76
标识
DOI:10.3390/data4030110
摘要

Recently there has been an exponential increase in the use of artificial intelligence for trading in financial markets such as stock and forex. Reinforcement learning has become of particular interest to financial traders ever since the program AlphaGo defeated the strongest human contemporary Go board game player Lee Sedol in 2016. We systematically reviewed all recent stock/forex prediction or trading articles that used reinforcement learning as their primary machine learning method. All reviewed articles had some unrealistic assumptions such as no transaction costs, no liquidity issues and no bid or ask spread issues. Transaction costs had significant impacts on the profitability of the reinforcement learning algorithms compared with the baseline algorithms tested. Despite showing statistically significant profitability when reinforcement learning was used in comparison with baseline models in many studies, some showed no meaningful level of profitability, in particular with large changes in the price pattern between the system training and testing data. Furthermore, few performance comparisons between reinforcement learning and other sophisticated machine/deep learning models were provided. The impact of transaction costs, including the bid/ask spread on profitability has also been assessed. In conclusion, reinforcement learning in stock/forex trading is still in its early development and further research is needed to make it a reliable method in this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方沅完成签到,获得积分10
3秒前
螃蟹One完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
19秒前
xy完成签到 ,获得积分10
31秒前
38秒前
脑洞疼应助liudy采纳,获得10
39秒前
gszy1975完成签到,获得积分10
40秒前
doudou发布了新的文献求助10
44秒前
Progie应助搞科研的肥宅吴采纳,获得10
51秒前
浮游应助科研通管家采纳,获得10
55秒前
浮游应助科研通管家采纳,获得10
55秒前
浮游应助科研通管家采纳,获得10
55秒前
浮游应助科研通管家采纳,获得10
55秒前
1分钟前
liudy发布了新的文献求助10
1分钟前
1分钟前
嘻嘻哈哈应助liudy采纳,获得10
1分钟前
少管我完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
大个应助科研通管家采纳,获得30
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
2分钟前
大模型应助科研通管家采纳,获得10
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
李健应助科研通管家采纳,获得10
2分钟前
慕青应助科研通管家采纳,获得10
2分钟前
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
无极微光应助科研通管家采纳,获得20
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
Deng发布了新的文献求助10
3分钟前
阿俊完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426548
求助须知:如何正确求助?哪些是违规求助? 4540251
关于积分的说明 14171889
捐赠科研通 4458024
什么是DOI,文献DOI怎么找? 2444772
邀请新用户注册赠送积分活动 1435850
关于科研通互助平台的介绍 1413284