Reinforcement Learning in Financial Markets

强化学习 盈利能力指数 外汇市场 证券交易所 交易成本 人工智能 交易数据 计算机科学 市场流动性 学习分类器系统 数据库事务 交易策略 机器学习 金融经济学 业务 财务 经济 汇率 数据库
作者
Terry Lingze Meng,Matloob Khushi
出处
期刊:Data [MDPI AG]
卷期号:4 (3): 110-110 被引量:76
标识
DOI:10.3390/data4030110
摘要

Recently there has been an exponential increase in the use of artificial intelligence for trading in financial markets such as stock and forex. Reinforcement learning has become of particular interest to financial traders ever since the program AlphaGo defeated the strongest human contemporary Go board game player Lee Sedol in 2016. We systematically reviewed all recent stock/forex prediction or trading articles that used reinforcement learning as their primary machine learning method. All reviewed articles had some unrealistic assumptions such as no transaction costs, no liquidity issues and no bid or ask spread issues. Transaction costs had significant impacts on the profitability of the reinforcement learning algorithms compared with the baseline algorithms tested. Despite showing statistically significant profitability when reinforcement learning was used in comparison with baseline models in many studies, some showed no meaningful level of profitability, in particular with large changes in the price pattern between the system training and testing data. Furthermore, few performance comparisons between reinforcement learning and other sophisticated machine/deep learning models were provided. The impact of transaction costs, including the bid/ask spread on profitability has also been assessed. In conclusion, reinforcement learning in stock/forex trading is still in its early development and further research is needed to make it a reliable method in this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁月辉发布了新的文献求助10
1秒前
GGbond完成签到,获得积分10
3秒前
fshell完成签到,获得积分10
3秒前
satchzhao发布了新的文献求助10
4秒前
斯文败类应助木子采纳,获得10
4秒前
yangican发布了新的文献求助10
4秒前
Tourist应助bdJ采纳,获得10
5秒前
嘿嘿嘿完成签到,获得积分10
5秒前
汉堡包应助烟锁重楼采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
8秒前
未来完成签到,获得积分10
8秒前
打打应助她要自己去买花采纳,获得10
8秒前
8秒前
8秒前
8秒前
淡然岂愈完成签到,获得积分20
9秒前
bkagyin应助11_aa采纳,获得10
9秒前
lzl17o8发布了新的文献求助10
9秒前
依瑶发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
FashionBoy应助潇洒的元风采纳,获得10
10秒前
nini完成签到,获得积分10
10秒前
田様应助复杂的如萱采纳,获得10
10秒前
王春焦完成签到,获得积分10
10秒前
橘子发布了新的文献求助30
11秒前
11秒前
小叙发布了新的文献求助10
12秒前
淡然岂愈发布了新的文献求助10
12秒前
广广发布了新的文献求助10
12秒前
啦啦啦发布了新的文献求助10
12秒前
上官翠花发布了新的文献求助10
12秒前
liliyi发布了新的文献求助10
13秒前
您疼肚完成签到,获得积分20
13秒前
脑洞疼应助xh采纳,获得10
13秒前
单薄的笑柳完成签到,获得积分10
13秒前
14秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442411
求助须知:如何正确求助?哪些是违规求助? 4552693
关于积分的说明 14237826
捐赠科研通 4473934
什么是DOI,文献DOI怎么找? 2451764
邀请新用户注册赠送积分活动 1442609
关于科研通互助平台的介绍 1418551