Reinforcement Learning in Financial Markets

强化学习 盈利能力指数 外汇市场 证券交易所 交易成本 人工智能 交易数据 计算机科学 市场流动性 学习分类器系统 数据库事务 交易策略 机器学习 金融经济学 业务 财务 经济 汇率 数据库
作者
Terry Lingze Meng,Matloob Khushi
出处
期刊:Data [MDPI AG]
卷期号:4 (3): 110-110 被引量:76
标识
DOI:10.3390/data4030110
摘要

Recently there has been an exponential increase in the use of artificial intelligence for trading in financial markets such as stock and forex. Reinforcement learning has become of particular interest to financial traders ever since the program AlphaGo defeated the strongest human contemporary Go board game player Lee Sedol in 2016. We systematically reviewed all recent stock/forex prediction or trading articles that used reinforcement learning as their primary machine learning method. All reviewed articles had some unrealistic assumptions such as no transaction costs, no liquidity issues and no bid or ask spread issues. Transaction costs had significant impacts on the profitability of the reinforcement learning algorithms compared with the baseline algorithms tested. Despite showing statistically significant profitability when reinforcement learning was used in comparison with baseline models in many studies, some showed no meaningful level of profitability, in particular with large changes in the price pattern between the system training and testing data. Furthermore, few performance comparisons between reinforcement learning and other sophisticated machine/deep learning models were provided. The impact of transaction costs, including the bid/ask spread on profitability has also been assessed. In conclusion, reinforcement learning in stock/forex trading is still in its early development and further research is needed to make it a reliable method in this domain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西门醉卉完成签到,获得积分10
刚刚
别看我只是一只羊完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
3秒前
SYY发布了新的文献求助10
3秒前
3秒前
小噜猪发布了新的文献求助10
3秒前
4秒前
4秒前
稳重的雨灵完成签到,获得积分10
5秒前
帅气鹰完成签到,获得积分10
5秒前
洁净的雪青完成签到,获得积分10
5秒前
zhangyida完成签到,获得积分10
5秒前
Akim应助鱼儿采纳,获得10
6秒前
黎小静完成签到,获得积分10
6秒前
随风发布了新的文献求助10
6秒前
孤独丹秋发布了新的文献求助10
6秒前
LiuKangwei完成签到,获得积分10
6秒前
xue发布了新的文献求助10
6秒前
胡俊完成签到,获得积分20
7秒前
共享精神应助杨朝进采纳,获得10
7秒前
7秒前
123发布了新的文献求助10
8秒前
大乐发布了新的文献求助10
8秒前
9秒前
桐桐应助调皮的皓轩采纳,获得10
9秒前
mimi完成签到,获得积分20
9秒前
赘婿应助细心的雪晴采纳,获得30
9秒前
魔幻若血发布了新的文献求助10
10秒前
好名字发布了新的文献求助10
10秒前
10秒前
隐形曼青应助柒七采纳,获得10
10秒前
11秒前
11秒前
文静的飞飞完成签到 ,获得积分10
11秒前
小马甲应助RR采纳,获得10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546309
求助须知:如何正确求助?哪些是违规求助? 4632193
关于积分的说明 14625447
捐赠科研通 4573861
什么是DOI,文献DOI怎么找? 2507851
邀请新用户注册赠送积分活动 1484503
关于科研通互助平台的介绍 1455714