Reinforcement Learning in Financial Markets

强化学习 盈利能力指数 外汇市场 证券交易所 交易成本 人工智能 交易数据 计算机科学 市场流动性 学习分类器系统 数据库事务 交易策略 机器学习 金融经济学 业务 财务 经济 汇率 数据库
作者
Terry Lingze Meng,Matloob Khushi
出处
期刊:Data [MDPI AG]
卷期号:4 (3): 110-110 被引量:76
标识
DOI:10.3390/data4030110
摘要

Recently there has been an exponential increase in the use of artificial intelligence for trading in financial markets such as stock and forex. Reinforcement learning has become of particular interest to financial traders ever since the program AlphaGo defeated the strongest human contemporary Go board game player Lee Sedol in 2016. We systematically reviewed all recent stock/forex prediction or trading articles that used reinforcement learning as their primary machine learning method. All reviewed articles had some unrealistic assumptions such as no transaction costs, no liquidity issues and no bid or ask spread issues. Transaction costs had significant impacts on the profitability of the reinforcement learning algorithms compared with the baseline algorithms tested. Despite showing statistically significant profitability when reinforcement learning was used in comparison with baseline models in many studies, some showed no meaningful level of profitability, in particular with large changes in the price pattern between the system training and testing data. Furthermore, few performance comparisons between reinforcement learning and other sophisticated machine/deep learning models were provided. The impact of transaction costs, including the bid/ask spread on profitability has also been assessed. In conclusion, reinforcement learning in stock/forex trading is still in its early development and further research is needed to make it a reliable method in this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
kk完成签到,获得积分10
3秒前
3秒前
华仔应助无聊的太清采纳,获得10
4秒前
花牛完成签到 ,获得积分10
5秒前
ZOO发布了新的文献求助30
5秒前
苏大脸完成签到,获得积分10
5秒前
鱼选发布了新的文献求助10
7秒前
马荣发布了新的文献求助10
8秒前
花牛关注了科研通微信公众号
8秒前
XiaoBai完成签到,获得积分10
10秒前
小二郎应助李永成采纳,获得10
10秒前
11秒前
独特的火车完成签到,获得积分10
11秒前
烂漫靖柏完成签到 ,获得积分10
11秒前
咸蛋黄巧克力完成签到,获得积分10
11秒前
NAMI完成签到 ,获得积分10
14秒前
恩善完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
科研通AI6应助美丽的周采纳,获得10
18秒前
勤恳的歌曲完成签到,获得积分10
18秒前
18秒前
明镜完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
栗子完成签到,获得积分10
22秒前
深情安青应助起风了采纳,获得10
23秒前
香蕉觅云应助Lismart采纳,获得10
23秒前
听风随影完成签到 ,获得积分20
24秒前
老金喵完成签到,获得积分20
26秒前
大模型应助Green采纳,获得10
28秒前
小竹完成签到 ,获得积分10
29秒前
加菲丰丰给优秀的煎蛋的求助进行了留言
30秒前
30秒前
31秒前
ZOO完成签到,获得积分10
32秒前
33秒前
单薄熊猫完成签到,获得积分10
34秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453860
求助须知:如何正确求助?哪些是违规求助? 4561372
关于积分的说明 14282285
捐赠科研通 4485318
什么是DOI,文献DOI怎么找? 2456660
邀请新用户注册赠送积分活动 1447375
关于科研通互助平台的介绍 1422701