亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement Learning in Financial Markets

强化学习 盈利能力指数 外汇市场 证券交易所 交易成本 人工智能 交易数据 计算机科学 市场流动性 学习分类器系统 数据库事务 交易策略 机器学习 金融经济学 业务 财务 经济 汇率 数据库
作者
Terry Lingze Meng,Matloob Khushi
出处
期刊:Data [Multidisciplinary Digital Publishing Institute]
卷期号:4 (3): 110-110 被引量:76
标识
DOI:10.3390/data4030110
摘要

Recently there has been an exponential increase in the use of artificial intelligence for trading in financial markets such as stock and forex. Reinforcement learning has become of particular interest to financial traders ever since the program AlphaGo defeated the strongest human contemporary Go board game player Lee Sedol in 2016. We systematically reviewed all recent stock/forex prediction or trading articles that used reinforcement learning as their primary machine learning method. All reviewed articles had some unrealistic assumptions such as no transaction costs, no liquidity issues and no bid or ask spread issues. Transaction costs had significant impacts on the profitability of the reinforcement learning algorithms compared with the baseline algorithms tested. Despite showing statistically significant profitability when reinforcement learning was used in comparison with baseline models in many studies, some showed no meaningful level of profitability, in particular with large changes in the price pattern between the system training and testing data. Furthermore, few performance comparisons between reinforcement learning and other sophisticated machine/deep learning models were provided. The impact of transaction costs, including the bid/ask spread on profitability has also been assessed. In conclusion, reinforcement learning in stock/forex trading is still in its early development and further research is needed to make it a reliable method in this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪仔5号发布了新的文献求助10
8秒前
思源应助科研通管家采纳,获得10
17秒前
神秘面筋男完成签到,获得积分10
37秒前
46秒前
hgsgeospan完成签到,获得积分10
1分钟前
Chaos完成签到 ,获得积分10
1分钟前
hgs完成签到,获得积分10
1分钟前
猪仔5号发布了新的文献求助10
1分钟前
2分钟前
3分钟前
4分钟前
一二三四发布了新的文献求助10
4分钟前
5分钟前
一二三四完成签到,获得积分10
5分钟前
5分钟前
5分钟前
科研通AI6应助科研通管家采纳,获得30
6分钟前
7分钟前
金光一闪发布了新的文献求助10
7分钟前
金光一闪完成签到,获得积分10
7分钟前
7分钟前
爱静静应助乔威采纳,获得10
8分钟前
8分钟前
笔墨纸砚完成签到 ,获得积分10
8分钟前
9分钟前
田様应助Alice采纳,获得10
9分钟前
9分钟前
9分钟前
cc发布了新的文献求助10
10分钟前
浮游应助cc采纳,获得10
10分钟前
FashionBoy应助cc采纳,获得10
10分钟前
尼古丁的味道完成签到 ,获得积分10
10分钟前
余呀余完成签到 ,获得积分10
10分钟前
cc完成签到,获得积分10
10分钟前
鳄鱼不做饿梦完成签到,获得积分10
11分钟前
11分钟前
fangjc1024发布了新的文献求助10
11分钟前
11分钟前
Mcling完成签到,获得积分10
11分钟前
fangjc1024完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302846
求助须知:如何正确求助?哪些是违规求助? 4449882
关于积分的说明 13848728
捐赠科研通 4336199
什么是DOI,文献DOI怎么找? 2380825
邀请新用户注册赠送积分活动 1375769
关于科研通互助平台的介绍 1342143