Reinforcement Learning in Financial Markets

强化学习 盈利能力指数 外汇市场 证券交易所 交易成本 人工智能 交易数据 计算机科学 市场流动性 学习分类器系统 数据库事务 交易策略 机器学习 金融经济学 业务 财务 经济 汇率 数据库
作者
Terry Lingze Meng,Matloob Khushi
出处
期刊:Data [MDPI AG]
卷期号:4 (3): 110-110 被引量:76
标识
DOI:10.3390/data4030110
摘要

Recently there has been an exponential increase in the use of artificial intelligence for trading in financial markets such as stock and forex. Reinforcement learning has become of particular interest to financial traders ever since the program AlphaGo defeated the strongest human contemporary Go board game player Lee Sedol in 2016. We systematically reviewed all recent stock/forex prediction or trading articles that used reinforcement learning as their primary machine learning method. All reviewed articles had some unrealistic assumptions such as no transaction costs, no liquidity issues and no bid or ask spread issues. Transaction costs had significant impacts on the profitability of the reinforcement learning algorithms compared with the baseline algorithms tested. Despite showing statistically significant profitability when reinforcement learning was used in comparison with baseline models in many studies, some showed no meaningful level of profitability, in particular with large changes in the price pattern between the system training and testing data. Furthermore, few performance comparisons between reinforcement learning and other sophisticated machine/deep learning models were provided. The impact of transaction costs, including the bid/ask spread on profitability has also been assessed. In conclusion, reinforcement learning in stock/forex trading is still in its early development and further research is needed to make it a reliable method in this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴炫完成签到 ,获得积分10
1秒前
在水一方应助毅诚菌采纳,获得10
1秒前
衣兮完成签到,获得积分10
1秒前
宁静致远发布了新的文献求助10
2秒前
weilei完成签到,获得积分10
2秒前
sunset发布了新的文献求助10
3秒前
orixero应助安详的芷采纳,获得10
3秒前
4秒前
4秒前
6秒前
6秒前
6秒前
8秒前
科研通AI6应助jellyfish采纳,获得50
9秒前
共享精神应助高兴鸿煊采纳,获得10
9秒前
无私如花完成签到,获得积分10
9秒前
9秒前
Orange应助aa采纳,获得10
9秒前
巨星不吃辣完成签到,获得积分10
10秒前
10秒前
Li发布了新的文献求助10
11秒前
11秒前
zz发布了新的文献求助10
12秒前
13秒前
Ava应助sunshine采纳,获得10
13秒前
ArZn完成签到,获得积分10
13秒前
Allis发布了新的文献求助10
13秒前
多情凝蕊完成签到,获得积分20
13秒前
科研通AI6应助华哥采纳,获得10
14秒前
浮游应助XHL采纳,获得10
16秒前
彭彭发布了新的文献求助10
16秒前
17秒前
在水一方应助Julie采纳,获得10
18秒前
冷艳新波完成签到,获得积分10
18秒前
脑洞疼应助cm357558984采纳,获得10
18秒前
okiya完成签到,获得积分10
19秒前
稳重擎苍发布了新的文献求助10
20秒前
猴哥完成签到,获得积分10
20秒前
21秒前
hsn发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5320977
求助须知:如何正确求助?哪些是违规求助? 4462749
关于积分的说明 13887609
捐赠科研通 4353801
什么是DOI,文献DOI怎么找? 2391340
邀请新用户注册赠送积分活动 1385010
关于科研通互助平台的介绍 1354802