已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reinforcement Learning in Financial Markets

强化学习 盈利能力指数 外汇市场 证券交易所 交易成本 人工智能 交易数据 计算机科学 市场流动性 学习分类器系统 数据库事务 交易策略 机器学习 金融经济学 业务 财务 经济 汇率 数据库
作者
Terry Lingze Meng,Matloob Khushi
出处
期刊:Data [Multidisciplinary Digital Publishing Institute]
卷期号:4 (3): 110-110 被引量:76
标识
DOI:10.3390/data4030110
摘要

Recently there has been an exponential increase in the use of artificial intelligence for trading in financial markets such as stock and forex. Reinforcement learning has become of particular interest to financial traders ever since the program AlphaGo defeated the strongest human contemporary Go board game player Lee Sedol in 2016. We systematically reviewed all recent stock/forex prediction or trading articles that used reinforcement learning as their primary machine learning method. All reviewed articles had some unrealistic assumptions such as no transaction costs, no liquidity issues and no bid or ask spread issues. Transaction costs had significant impacts on the profitability of the reinforcement learning algorithms compared with the baseline algorithms tested. Despite showing statistically significant profitability when reinforcement learning was used in comparison with baseline models in many studies, some showed no meaningful level of profitability, in particular with large changes in the price pattern between the system training and testing data. Furthermore, few performance comparisons between reinforcement learning and other sophisticated machine/deep learning models were provided. The impact of transaction costs, including the bid/ask spread on profitability has also been assessed. In conclusion, reinforcement learning in stock/forex trading is still in its early development and further research is needed to make it a reliable method in this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wykang完成签到 ,获得积分10
1秒前
科研通AI5应助张清璇采纳,获得10
1秒前
刘太冰完成签到,获得积分20
2秒前
丘比特应助何茂郎采纳,获得10
3秒前
科研小白发布了新的文献求助10
3秒前
CodeCraft应助魔幻安筠采纳,获得10
3秒前
简单冰巧完成签到 ,获得积分10
3秒前
4秒前
苹果秋灵发布了新的文献求助10
5秒前
辛勤长颈鹿完成签到 ,获得积分10
8秒前
pioneer发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
11秒前
12秒前
12秒前
TANGchenran发布了新的文献求助30
14秒前
daisy发布了新的文献求助30
15秒前
却道天凉好个秋完成签到,获得积分20
15秒前
15秒前
15秒前
orixero应助优雅语兰采纳,获得10
16秒前
魔幻安筠发布了新的文献求助10
16秒前
shinn发布了新的文献求助10
16秒前
小猛人发布了新的文献求助10
16秒前
科研小白完成签到,获得积分10
17秒前
何茂郎发布了新的文献求助10
18秒前
18秒前
22秒前
jiang发布了新的文献求助10
23秒前
医学僧也想成为科主任完成签到,获得积分10
24秒前
LAYWING完成签到 ,获得积分10
24秒前
25秒前
何茂郎完成签到,获得积分10
26秒前
daisy完成签到,获得积分10
27秒前
Bibbidi关注了科研通微信公众号
28秒前
无敌幸运儿完成签到 ,获得积分10
29秒前
阮大帅气完成签到,获得积分10
30秒前
云是发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968024
求助须知:如何正确求助?哪些是违规求助? 3513050
关于积分的说明 11166224
捐赠科研通 3248224
什么是DOI,文献DOI怎么找? 1794124
邀请新用户注册赠送积分活动 874880
科研通“疑难数据库(出版商)”最低求助积分说明 804610