Reinforcement Learning in Financial Markets

强化学习 盈利能力指数 外汇市场 证券交易所 交易成本 人工智能 交易数据 计算机科学 市场流动性 学习分类器系统 数据库事务 交易策略 机器学习 金融经济学 业务 财务 经济 汇率 数据库
作者
Terry Lingze Meng,Matloob Khushi
出处
期刊:Data [MDPI AG]
卷期号:4 (3): 110-110 被引量:76
标识
DOI:10.3390/data4030110
摘要

Recently there has been an exponential increase in the use of artificial intelligence for trading in financial markets such as stock and forex. Reinforcement learning has become of particular interest to financial traders ever since the program AlphaGo defeated the strongest human contemporary Go board game player Lee Sedol in 2016. We systematically reviewed all recent stock/forex prediction or trading articles that used reinforcement learning as their primary machine learning method. All reviewed articles had some unrealistic assumptions such as no transaction costs, no liquidity issues and no bid or ask spread issues. Transaction costs had significant impacts on the profitability of the reinforcement learning algorithms compared with the baseline algorithms tested. Despite showing statistically significant profitability when reinforcement learning was used in comparison with baseline models in many studies, some showed no meaningful level of profitability, in particular with large changes in the price pattern between the system training and testing data. Furthermore, few performance comparisons between reinforcement learning and other sophisticated machine/deep learning models were provided. The impact of transaction costs, including the bid/ask spread on profitability has also been assessed. In conclusion, reinforcement learning in stock/forex trading is still in its early development and further research is needed to make it a reliable method in this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
从别后忆相逢完成签到 ,获得积分10
2秒前
洁净山灵发布了新的文献求助10
3秒前
Siney发布了新的文献求助10
3秒前
勇哥搞科研完成签到,获得积分10
4秒前
4秒前
Umwandlung完成签到,获得积分10
6秒前
沉思猫完成签到,获得积分10
7秒前
8秒前
Metakuro发布了新的文献求助10
8秒前
8秒前
自然有手就行完成签到,获得积分10
9秒前
10秒前
10秒前
糊涂涂完成签到,获得积分10
11秒前
科研通AI2S应助Metakuro采纳,获得10
12秒前
一二三完成签到,获得积分10
12秒前
嘎嘎发布了新的文献求助10
12秒前
明理的凝蕊应助胖胖采纳,获得20
13秒前
14秒前
14秒前
15秒前
xiyue发布了新的文献求助10
15秒前
落后以旋完成签到,获得积分10
17秒前
一二三发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
19秒前
萝卜炖土豆完成签到,获得积分10
19秒前
Spectrum_07完成签到,获得积分10
20秒前
Bing发布了新的文献求助10
20秒前
22秒前
22秒前
lhyhnzdvhj完成签到,获得积分10
22秒前
23秒前
Ava应助gigi采纳,获得10
23秒前
陈梦鼠完成签到,获得积分10
24秒前
洁净春天发布了新的文献求助10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135818
求助须知:如何正确求助?哪些是违规求助? 2786651
关于积分的说明 7778773
捐赠科研通 2442821
什么是DOI,文献DOI怎么找? 1298711
科研通“疑难数据库(出版商)”最低求助积分说明 625212
版权声明 600866