Reinforcement Learning in Financial Markets

强化学习 盈利能力指数 外汇市场 证券交易所 交易成本 人工智能 交易数据 计算机科学 市场流动性 学习分类器系统 数据库事务 交易策略 机器学习 金融经济学 业务 财务 经济 汇率 数据库
作者
Terry Lingze Meng,Matloob Khushi
出处
期刊:Data [Multidisciplinary Digital Publishing Institute]
卷期号:4 (3): 110-110 被引量:76
标识
DOI:10.3390/data4030110
摘要

Recently there has been an exponential increase in the use of artificial intelligence for trading in financial markets such as stock and forex. Reinforcement learning has become of particular interest to financial traders ever since the program AlphaGo defeated the strongest human contemporary Go board game player Lee Sedol in 2016. We systematically reviewed all recent stock/forex prediction or trading articles that used reinforcement learning as their primary machine learning method. All reviewed articles had some unrealistic assumptions such as no transaction costs, no liquidity issues and no bid or ask spread issues. Transaction costs had significant impacts on the profitability of the reinforcement learning algorithms compared with the baseline algorithms tested. Despite showing statistically significant profitability when reinforcement learning was used in comparison with baseline models in many studies, some showed no meaningful level of profitability, in particular with large changes in the price pattern between the system training and testing data. Furthermore, few performance comparisons between reinforcement learning and other sophisticated machine/deep learning models were provided. The impact of transaction costs, including the bid/ask spread on profitability has also been assessed. In conclusion, reinforcement learning in stock/forex trading is still in its early development and further research is needed to make it a reliable method in this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张小斌完成签到,获得积分10
刚刚
JOKER完成签到 ,获得积分10
1秒前
i羽翼深蓝i完成签到,获得积分10
1秒前
大个应助艾米尼采纳,获得50
2秒前
康轲完成签到,获得积分10
2秒前
Ryan完成签到,获得积分10
2秒前
2秒前
AteeqBaloch完成签到,获得积分10
3秒前
gbx完成签到,获得积分10
4秒前
nature完成签到,获得积分10
4秒前
chengya完成签到,获得积分10
5秒前
wanci应助qq糖采纳,获得10
5秒前
务实雁梅完成签到,获得积分10
6秒前
小张完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助30
8秒前
8秒前
茹茹完成签到 ,获得积分10
9秒前
EurekaOvo完成签到,获得积分10
9秒前
液晶屏99完成签到,获得积分10
10秒前
NYM完成签到 ,获得积分10
10秒前
yun完成签到,获得积分10
10秒前
11秒前
忒寒碜完成签到,获得积分10
11秒前
13秒前
子健完成签到,获得积分10
13秒前
blingbling完成签到,获得积分20
14秒前
jidou1011完成签到,获得积分10
14秒前
慧慧完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
今夜不设防完成签到,获得积分10
15秒前
15秒前
DONNYTIO完成签到,获得积分10
16秒前
樊书雪完成签到,获得积分10
17秒前
18秒前
18秒前
笑点低的凉面完成签到,获得积分10
19秒前
百香果发布了新的文献求助10
19秒前
tca2204完成签到,获得积分10
21秒前
PGL发布了新的文献求助10
21秒前
呆呆小猪完成签到,获得积分10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661181
求助须知:如何正确求助?哪些是违规求助? 3222298
关于积分的说明 9744486
捐赠科研通 2931912
什么是DOI,文献DOI怎么找? 1605300
邀请新用户注册赠送积分活动 757805
科研通“疑难数据库(出版商)”最低求助积分说明 734569