Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade

医学 支持向量机 特征选择 朴素贝叶斯分类器 肾切除术 随机森林 肾细胞癌 放射科 人工智能 核医学 模式识别(心理学) 计算机科学 病理 内科学
作者
Ceyda Turan Bektaş,Burak Koçak,Aytül Hande Yardımcı,Mehmet Hamza Turkcanoglu,Uğur Yücetaş,Sevim Baykal Koca,Çağrı Erdim,Özgür Kılıçkesmez
出处
期刊:European Radiology [Springer Nature]
卷期号:29 (3): 1153-1163 被引量:131
标识
DOI:10.1007/s00330-018-5698-2
摘要

To evaluate the performance of quantitative computed tomography (CT) texture analysis using different machine learning (ML) classifiers for discriminating low and high nuclear grade clear cell renal cell carcinomas (cc-RCCs). This retrospective study included 53 patients with pathologically proven 54 cc-RCCs (31 low-grade [grade 1 or 2]; 23 high-grade [grade 3 or 4]). In one patient, two synchronous cc-RCCs were included in the analysis. Mean age was 57.5 years. Thirty-four (64.1%) patients were male and 19 were female (35.9%). Mean tumour size based on the maximum diameter was 57.4 mm (range, 16–145 mm). Forty patients underwent radical nephrectomy and 13 underwent partial nephrectomy. Following pre-processing steps, two-dimensional CT texture features were extracted using portal-phase contrast-enhanced CT. Reproducibility of texture features was assessed with the intra-class correlation coefficient (ICC). Nested cross-validation with a wrapper-based algorithm was used in feature selection and model optimisation. The ML classifiers were support vector machine (SVM), multilayer perceptron (MLP, a sort of neural network), naive Bayes, k-nearest neighbours, and random forest. The performance of the classifiers was compared by certain metrics. Among 279 texture features, 241 features with an ICC equal to or higher than 0.80 (excellent reproducibility) were included in the further feature selection process. The best model was created using SVM. The selected subset of features for SVM included five co-occurrence matrix (ICC range, 0.885–0.998), three run-length matrix (ICC range, 0.889–0.992), one gradient (ICC = 0.998), and four Haar wavelet features (ICC range, 0.941–0.997). The overall accuracy, sensitivity (for detecting high-grade cc-RCCs), specificity (for detecting high-grade cc-RCCs), and overall area under the curve of the best model were 85.1%, 91.3%, 80.6%, and 0.860, respectively. The ML-based CT texture analysis can be a useful and promising non-invasive method for prediction of low and high Fuhrman nuclear grade cc-RCCs. • Based on the percutaneous biopsy literature, ML-based CT texture analysis has a comparable predictive performance with percutaneous biopsy. • Highest predictive performance was obtained with use of the SVM. • SVM correctly classified 85.1% of cc-RCCs in terms of nuclear grade, with an AUC of 0.860.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiayouYi完成签到,获得积分10
刚刚
sunzhiyu233完成签到,获得积分20
刚刚
怡然菲音发布了新的文献求助10
刚刚
袁访天完成签到,获得积分10
1秒前
英姑应助RONG采纳,获得10
1秒前
1秒前
2秒前
冷酷尔琴发布了新的文献求助10
3秒前
3秒前
3秒前
kai_完成签到,获得积分10
4秒前
Tikh完成签到,获得积分10
4秒前
充电宝应助通~采纳,获得10
4秒前
科研雷锋发布了新的文献求助10
5秒前
坚强亦丝应助香蕉初瑶采纳,获得10
5秒前
wormzjl完成签到,获得积分10
6秒前
朱先生完成签到 ,获得积分10
6秒前
饱满的大碗完成签到 ,获得积分10
6秒前
7秒前
ding应助Ymj采纳,获得10
7秒前
7秒前
科研欣路发布了新的文献求助30
7秒前
8秒前
111发布了新的文献求助10
8秒前
田様应助冷酷尔琴采纳,获得10
8秒前
李健应助杰克李李采纳,获得10
9秒前
9秒前
Nefelibata发布了新的文献求助10
9秒前
非常可爱应助时尚的书易采纳,获得20
9秒前
10秒前
敏感初露发布了新的文献求助10
10秒前
汉堡包应助thousandlong采纳,获得10
11秒前
Liu发布了新的文献求助10
11秒前
11秒前
12秒前
胖豆完成签到,获得积分10
13秒前
13秒前
通~发布了新的文献求助10
13秒前
einuo发布了新的文献求助10
13秒前
tgd完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740