Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade

医学 支持向量机 特征选择 朴素贝叶斯分类器 肾切除术 随机森林 肾细胞癌 放射科 人工智能 核医学 模式识别(心理学) 计算机科学 病理 内科学
作者
Ceyda Turan Bektaş,Burak Koçak,Aytül Hande Yardımcı,Mehmet Hamza Türkcanoğlu,Uğur Yücetaş,Sevim Baykal Koca,Çağrı Erdim,Özgür Kılıçkesmez
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:29 (3): 1153-1163 被引量:138
标识
DOI:10.1007/s00330-018-5698-2
摘要

To evaluate the performance of quantitative computed tomography (CT) texture analysis using different machine learning (ML) classifiers for discriminating low and high nuclear grade clear cell renal cell carcinomas (cc-RCCs). This retrospective study included 53 patients with pathologically proven 54 cc-RCCs (31 low-grade [grade 1 or 2]; 23 high-grade [grade 3 or 4]). In one patient, two synchronous cc-RCCs were included in the analysis. Mean age was 57.5 years. Thirty-four (64.1%) patients were male and 19 were female (35.9%). Mean tumour size based on the maximum diameter was 57.4 mm (range, 16–145 mm). Forty patients underwent radical nephrectomy and 13 underwent partial nephrectomy. Following pre-processing steps, two-dimensional CT texture features were extracted using portal-phase contrast-enhanced CT. Reproducibility of texture features was assessed with the intra-class correlation coefficient (ICC). Nested cross-validation with a wrapper-based algorithm was used in feature selection and model optimisation. The ML classifiers were support vector machine (SVM), multilayer perceptron (MLP, a sort of neural network), naive Bayes, k-nearest neighbours, and random forest. The performance of the classifiers was compared by certain metrics. Among 279 texture features, 241 features with an ICC equal to or higher than 0.80 (excellent reproducibility) were included in the further feature selection process. The best model was created using SVM. The selected subset of features for SVM included five co-occurrence matrix (ICC range, 0.885–0.998), three run-length matrix (ICC range, 0.889–0.992), one gradient (ICC = 0.998), and four Haar wavelet features (ICC range, 0.941–0.997). The overall accuracy, sensitivity (for detecting high-grade cc-RCCs), specificity (for detecting high-grade cc-RCCs), and overall area under the curve of the best model were 85.1%, 91.3%, 80.6%, and 0.860, respectively. The ML-based CT texture analysis can be a useful and promising non-invasive method for prediction of low and high Fuhrman nuclear grade cc-RCCs. • Based on the percutaneous biopsy literature, ML-based CT texture analysis has a comparable predictive performance with percutaneous biopsy. • Highest predictive performance was obtained with use of the SVM. • SVM correctly classified 85.1% of cc-RCCs in terms of nuclear grade, with an AUC of 0.860.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助酷酷小子采纳,获得10
刚刚
刚刚
领导范儿应助酷酷小子采纳,获得10
刚刚
刚刚
隐形曼青应助酷酷小子采纳,获得10
刚刚
高高应助tangzhuojuan采纳,获得10
刚刚
ding应助喵喵采纳,获得10
1秒前
2秒前
Zjx发布了新的文献求助10
2秒前
3秒前
田様应助hcmsaobang2001采纳,获得10
4秒前
科目三应助kuka007采纳,获得10
4秒前
liuguyue发布了新的文献求助10
4秒前
6秒前
kassidy完成签到,获得积分20
6秒前
重要的班发布了新的文献求助20
7秒前
heavennew发布了新的文献求助10
7秒前
希望天下0贩的0应助wbh采纳,获得10
8秒前
9秒前
11秒前
12秒前
liuguyue完成签到,获得积分10
12秒前
中和皇极应助无奈睫毛膏采纳,获得10
12秒前
舒克完成签到,获得积分10
13秒前
Jino发布了新的文献求助1030
14秒前
14秒前
14秒前
14秒前
Zzzhou23完成签到,获得积分10
17秒前
喵喵发布了新的文献求助10
17秒前
热心玉兰发布了新的文献求助10
18秒前
kuka007发布了新的文献求助10
20秒前
Zzzhou23发布了新的文献求助30
20秒前
kizaru完成签到,获得积分10
20秒前
嘟嘟嘟嘟完成签到 ,获得积分10
21秒前
25秒前
25秒前
25秒前
水木年华完成签到,获得积分10
27秒前
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993371
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264545
捐赠科研通 3273794
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652