已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade

医学 支持向量机 特征选择 朴素贝叶斯分类器 肾切除术 随机森林 肾细胞癌 放射科 人工智能 核医学 模式识别(心理学) 计算机科学 病理 内科学
作者
Ceyda Turan Bektaş,Burak Koçak,Aytül Hande Yardımcı,Mehmet Hamza Turkcanoglu,Uğur Yücetaş,Sevim Baykal Koca,Çağrı Erdim,Özgür Kılıçkesmez
出处
期刊:European Radiology [Springer Nature]
卷期号:29 (3): 1153-1163 被引量:131
标识
DOI:10.1007/s00330-018-5698-2
摘要

To evaluate the performance of quantitative computed tomography (CT) texture analysis using different machine learning (ML) classifiers for discriminating low and high nuclear grade clear cell renal cell carcinomas (cc-RCCs). This retrospective study included 53 patients with pathologically proven 54 cc-RCCs (31 low-grade [grade 1 or 2]; 23 high-grade [grade 3 or 4]). In one patient, two synchronous cc-RCCs were included in the analysis. Mean age was 57.5 years. Thirty-four (64.1%) patients were male and 19 were female (35.9%). Mean tumour size based on the maximum diameter was 57.4 mm (range, 16–145 mm). Forty patients underwent radical nephrectomy and 13 underwent partial nephrectomy. Following pre-processing steps, two-dimensional CT texture features were extracted using portal-phase contrast-enhanced CT. Reproducibility of texture features was assessed with the intra-class correlation coefficient (ICC). Nested cross-validation with a wrapper-based algorithm was used in feature selection and model optimisation. The ML classifiers were support vector machine (SVM), multilayer perceptron (MLP, a sort of neural network), naive Bayes, k-nearest neighbours, and random forest. The performance of the classifiers was compared by certain metrics. Among 279 texture features, 241 features with an ICC equal to or higher than 0.80 (excellent reproducibility) were included in the further feature selection process. The best model was created using SVM. The selected subset of features for SVM included five co-occurrence matrix (ICC range, 0.885–0.998), three run-length matrix (ICC range, 0.889–0.992), one gradient (ICC = 0.998), and four Haar wavelet features (ICC range, 0.941–0.997). The overall accuracy, sensitivity (for detecting high-grade cc-RCCs), specificity (for detecting high-grade cc-RCCs), and overall area under the curve of the best model were 85.1%, 91.3%, 80.6%, and 0.860, respectively. The ML-based CT texture analysis can be a useful and promising non-invasive method for prediction of low and high Fuhrman nuclear grade cc-RCCs. • Based on the percutaneous biopsy literature, ML-based CT texture analysis has a comparable predictive performance with percutaneous biopsy. • Highest predictive performance was obtained with use of the SVM. • SVM correctly classified 85.1% of cc-RCCs in terms of nuclear grade, with an AUC of 0.860.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WangJL完成签到 ,获得积分10
1秒前
桐桐应助杨哈哈采纳,获得10
1秒前
hsk发布了新的文献求助10
2秒前
平平完成签到,获得积分10
3秒前
思源应助zy采纳,获得10
4秒前
爆米花应助ddd采纳,获得10
4秒前
zhang完成签到 ,获得积分10
5秒前
Denmark完成签到 ,获得积分10
5秒前
Junlin完成签到,获得积分10
6秒前
圆圆圆完成签到 ,获得积分10
6秒前
2224270676完成签到,获得积分10
6秒前
阔达的乌冬面完成签到 ,获得积分10
7秒前
牛奶拌可乐完成签到 ,获得积分10
7秒前
肉脸小鱼完成签到 ,获得积分10
7秒前
MUSTer一一完成签到 ,获得积分10
8秒前
蛙蛙完成签到,获得积分10
8秒前
Junlin发布了新的文献求助10
8秒前
果汁完成签到 ,获得积分10
9秒前
zzz完成签到 ,获得积分10
9秒前
小七完成签到 ,获得积分10
10秒前
10秒前
安详初蓝完成签到 ,获得积分10
11秒前
liu完成签到 ,获得积分10
12秒前
hsk完成签到,获得积分10
12秒前
三月聚粮完成签到 ,获得积分10
12秒前
科研通AI2S应助可乐采纳,获得10
15秒前
科研通AI2S应助可乐采纳,获得10
15秒前
科研通AI2S应助可乐采纳,获得10
15秒前
yuchen完成签到,获得积分10
15秒前
旋转鸡爪子完成签到,获得积分20
16秒前
Ying完成签到,获得积分10
17秒前
zgd完成签到 ,获得积分10
18秒前
18秒前
19秒前
21秒前
宋芽芽u完成签到 ,获得积分10
21秒前
灰灰12138完成签到,获得积分10
22秒前
阿兰完成签到 ,获得积分10
23秒前
填充物完成签到 ,获得积分10
23秒前
干破天完成签到 ,获得积分10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314289
求助须知:如何正确求助?哪些是违规求助? 2946571
关于积分的说明 8530830
捐赠科研通 2622299
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665310
邀请新用户注册赠送积分活动 650838