材料科学
石墨烯
纳米纤维
离子液体
化学工程
静电纺丝
氧化物
复合材料
生物高聚物
聚合物
纳米技术
有机化学
化学
催化作用
工程类
冶金
作者
Kashif Javed,Andres Krumme,Mihkel Viirsalu,Illia Krasnou,Tiia Plamus,Viktoria Vassiljeva,Elvira Tarasova,Natalja Savest,Arvo Mere,Valdek Mikli,Mati Danilson,Tiit Kaljuvee,Sven Lange,Qingchun Yuan,Paul D. Topham,Cheng-Meng Chen
出处
期刊:Carbon
[Elsevier]
日期:2018-12-01
卷期号:140: 148-156
被引量:19
标识
DOI:10.1016/j.carbon.2018.08.034
摘要
Owing to its high conductivity, graphene has been incorporated into polymeric nanofibers to create advanced materials for flexible electronics, sensors and tissue engineering. Typically, these graphene-based nanofibers are prepared by electrospinning synthetic polymers, whereas electrospun graphene-biopolymer nanofibers have been rarely reported due to poor compatibility of graphene with biopolymers. Herein, we report a new method for the preparation of graphene-biopolymer nanofibers using the judicious combination of an ionic liquid and electrospinning. Cellulose acetate (CA) has been used as the biopolymer, graphene oxide (GO) nanoparticles as the source of graphene and 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) as the ionic liquid (IL) to create CA-[BMIM]Cl-GO nanofibers by electrospinning for the first time. Moreover, we developed a new route to convert CA-[BMIM]Cl-GO nanofibers to reduced GO nanofibers using hydrazine vapor under ambient conditions to enhance the conductivity of the hybrid nanofibers. The graphene sheets were shown to be uniformly incorporated in the hybrid nanofibers and only 0.43 wt% of GO increase the conductivity of CA-[BMIM]Cl nanofibers by more than four orders of magnitude (from 2.71× 10−7 S/cm to 5.30 × 10−3 S/cm). This ultra-high enhancement opens up a new route for conductive enhancement of biopolymer nanofibers to be used in smart (bio) electronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI