An Improved Contaminant Source Identification Method for Sudden Water Pollution Accident in Coaster Estuaries

河口 环境科学 污染 计算机科学 遗传算法 海湾 自动识别系统 运筹学 数学优化 土木工程 地质学 数学 数据挖掘 工程类 海洋学 生物 生态学
作者
Jing Li,Jun Kong,Qing Wang,Ying Yao
出处
期刊:Journal of Coastal Research [BioOne (Coastal Education and Research Foundation)]
卷期号:85: 946-950 被引量:6
标识
DOI:10.2112/si85-190.1
摘要

Jing, L.; Kong, J.; Wang Q., and Yao Y.T., 2018. An improved contaminant source identification method for sudden water pollution accident in coaster estuaries, China. In: Shim, J.-S.; Chun, I., and Lim, H.S. (eds.), Proceedings from the International Coastal Symposium (ICS) 2018 (Busan, Republic of Korea). Journal of Coastal Research, Special Issue No. 85, pp. 946–950. Coconut Creek (Florida), ISSN 0749-0208.This paper presents a method for quickly and accurately identifying contaminant source in estuary region, characterized by decoupling solving releasing time, location and density of source problems, respectively. The method firstly gets the rough source releasing time by analyzing the typical double peak phenomenon in tidal estuary region, and then presents the rough position of source by using Lagrange tracing scheme. The rough position makes up the deficiency of priori information in traditional Genetic Algorithm (GA). And then, according to the correlation between the measured and calculated concentration at measuring point, a high resolution mass transportation and an optimization models are operated repeatedly and alternatively. In order to increase the efficiency of searching optimal parameters, the Genetic Algorithm is improved by introducing a weighting factor based on the precision improvement trend. Such an optimization model can effectively reduce the calculation burden when parameters are increased in demand. This model has been successfully applied in an accident case in Quanzhou Bay of China. Simulated results confirm the model's merits in reasonably identifying relevant unknown parameters. The convergence of present model is more efficient in searching for the optimal parameters with less iteration times nearly half the traditional Genetic Algorithm. This model is high efficiency and has great practical significance in dealing with emergent water pollution in estuary and coastal areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljz910005完成签到,获得积分10
刚刚
天选小牛马完成签到 ,获得积分10
刚刚
Larry1226发布了新的文献求助10
1秒前
动听白开水完成签到,获得积分10
1秒前
出水芙蓉完成签到,获得积分10
1秒前
123发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
小瑜发布了新的文献求助10
2秒前
帅气的东蒽完成签到,获得积分10
3秒前
小茵茵完成签到,获得积分10
3秒前
李大龙完成签到,获得积分10
4秒前
D调的华丽完成签到,获得积分10
4秒前
在水一方应助活力源智采纳,获得10
4秒前
景平完成签到,获得积分10
4秒前
tszjw168完成签到 ,获得积分10
4秒前
LiLi完成签到,获得积分10
5秒前
Ashao完成签到,获得积分10
5秒前
充电宝应助积极的雪莲采纳,获得10
5秒前
yuan完成签到,获得积分10
6秒前
淡定太兰完成签到 ,获得积分10
6秒前
橙酒完成签到,获得积分10
7秒前
滑稽帝完成签到,获得积分10
7秒前
叶燕完成签到 ,获得积分10
7秒前
吕yj完成签到,获得积分10
8秒前
8秒前
111发布了新的文献求助10
8秒前
9秒前
行舟完成签到 ,获得积分10
9秒前
Pa1mary完成签到 ,获得积分10
9秒前
果壳茉莉拌沙拉完成签到,获得积分10
10秒前
10秒前
11秒前
虾子完成签到,获得积分10
11秒前
黄豆完成签到,获得积分10
11秒前
zyh发布了新的文献求助30
11秒前
yuji4268发布了新的文献求助10
12秒前
索兰黛尔完成签到,获得积分10
13秒前
13秒前
小瑜完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131