An Improved Contaminant Source Identification Method for Sudden Water Pollution Accident in Coaster Estuaries

河口 环境科学 污染 计算机科学 遗传算法 海湾 自动识别系统 运筹学 数学优化 土木工程 地质学 数学 数据挖掘 工程类 海洋学 生物 生态学
作者
Jing Li,Jun Kong,Qing Wang,Ying Yao
出处
期刊:Journal of Coastal Research [Coastal Education and Research Foundation]
卷期号:85: 946-950 被引量:6
标识
DOI:10.2112/si85-190.1
摘要

Jing, L.; Kong, J.; Wang Q., and Yao Y.T., 2018. An improved contaminant source identification method for sudden water pollution accident in coaster estuaries, China. In: Shim, J.-S.; Chun, I., and Lim, H.S. (eds.), Proceedings from the International Coastal Symposium (ICS) 2018 (Busan, Republic of Korea). Journal of Coastal Research, Special Issue No. 85, pp. 946–950. Coconut Creek (Florida), ISSN 0749-0208.This paper presents a method for quickly and accurately identifying contaminant source in estuary region, characterized by decoupling solving releasing time, location and density of source problems, respectively. The method firstly gets the rough source releasing time by analyzing the typical double peak phenomenon in tidal estuary region, and then presents the rough position of source by using Lagrange tracing scheme. The rough position makes up the deficiency of priori information in traditional Genetic Algorithm (GA). And then, according to the correlation between the measured and calculated concentration at measuring point, a high resolution mass transportation and an optimization models are operated repeatedly and alternatively. In order to increase the efficiency of searching optimal parameters, the Genetic Algorithm is improved by introducing a weighting factor based on the precision improvement trend. Such an optimization model can effectively reduce the calculation burden when parameters are increased in demand. This model has been successfully applied in an accident case in Quanzhou Bay of China. Simulated results confirm the model's merits in reasonably identifying relevant unknown parameters. The convergence of present model is more efficient in searching for the optimal parameters with less iteration times nearly half the traditional Genetic Algorithm. This model is high efficiency and has great practical significance in dealing with emergent water pollution in estuary and coastal areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结王三完成签到,获得积分10
1秒前
1秒前
ai化学发布了新的文献求助10
1秒前
2秒前
Youngman完成签到,获得积分10
2秒前
CipherSage应助旅行的小七仔采纳,获得10
3秒前
加减乘除发布了新的文献求助10
3秒前
4秒前
MgZn完成签到 ,获得积分10
4秒前
福尔摩琪发布了新的文献求助10
4秒前
4秒前
6秒前
lyg发布了新的文献求助10
7秒前
orixero应助黎俊采纳,获得10
7秒前
bafang完成签到,获得积分10
8秒前
喵总完成签到,获得积分10
9秒前
华仔应助昵称采纳,获得10
9秒前
咖啡猫完成签到,获得积分20
9秒前
科研通AI5应助lhy33966采纳,获得10
9秒前
sam0522发布了新的文献求助10
9秒前
华仔应助六个核桃采纳,获得10
10秒前
利于蓄力发布了新的文献求助10
10秒前
哟哟哟发布了新的文献求助10
11秒前
fxtx1234发布了新的文献求助10
12秒前
小饶完成签到,获得积分10
12秒前
可爱的函函应助王子倩采纳,获得10
13秒前
bkagyin应助qq采纳,获得10
16秒前
sam0522完成签到,获得积分10
17秒前
文静的海完成签到,获得积分10
17秒前
HWJ完成签到,获得积分10
18秒前
pliciyir完成签到 ,获得积分10
18秒前
山雀完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
lamitky发布了新的文献求助10
20秒前
hua完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
mao完成签到,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088946
求助须知:如何正确求助?哪些是违规求助? 4303807
关于积分的说明 13412545
捐赠科研通 4129492
什么是DOI,文献DOI怎么找? 2261479
邀请新用户注册赠送积分活动 1265554
关于科研通互助平台的介绍 1200181