脉冲压缩
飞秒
光学
人工神经网络
脉搏(音乐)
飞秒脉冲整形
计算机科学
脉冲整形
算法
激光器
压缩(物理)
超短脉冲
数据压缩
过程(计算)
材料科学
人工智能
物理
电信
操作系统
探测器
复合材料
雷达
作者
Camille A. Farfan,Jordan Epstein,Daniel B. Turner
出处
期刊:Optics Letters
[The Optical Society]
日期:2018-10-15
卷期号:43 (20): 5166-5166
被引量:23
摘要
A key requirement for femtosecond spectroscopy measurements is to compress the laser pulse to its transform-limited duration. In particular, for few-cycle laser pulses, the compression process is time-consuming using conventional algorithms that converge statistically. Here we show that machine learning can accelerate the process of pulse compression: we have developed an adaptive neural-network algorithm to control a deformable-mirror-based pulse shaper that converges 100× faster than a standard evolutionary algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI