DNA barcoding authentication for the wood of eight endangeredDalbergiatimber species using machine learning approaches

DNA条形码 黄檀 濒危物种 条形码 物种鉴定 生物 分类器(UML) 鉴定(生物学) 植物 人工智能 计算机科学 进化生物学 生态学 操作系统 栖息地
作者
Tuo He,Lichao Jiao,Min Yu,Juan Guo,Xiaomei Jiang,Yafang Yin
出处
期刊:Holzforschung [De Gruyter]
卷期号:73 (3): 277-285 被引量:21
标识
DOI:10.1515/hf-2018-0076
摘要

Abstract Reliable wood identification and proof of the provenance of trees is the first step for combating illegal logging. DNA barcoding belongs to the promising tools in this regard, for which reliable methods and reference libraries are needed. Machine learning approaches (MLAs) are tailored to the necessities of DNA barcoding, which are based on mathematical multivaried analysis. In the present study, eight Dalbergia timber species were investigated in terms of their DNA sequences focusing on four barcodes (ITS2, mat K, trn H- psb A and trn L) by means of the MLAs BLOG and WEKA for wood species identification. The data material downloaded from NCBI (288 sequences) and taken from a previous study of the authors (153 DNA sequences) was taken as dataset for calibration. The MLAs’ effectivity was verified through identification of non-vouchered wood specimens. The results indicate that the SMO classifier as part of the WEKA approach performed the best (98%~100%) for discriminating the eight Dalbergia timber species. Moreover, the two-locus combination ITS2+ trn H- psb A showed the highest success rate. Furthermore, the non-vouchered wood specimens were successfully identified by means of ITS2+ trn H- psb A with the SMO classifier. The MLAs are successful in combi- nation with DNA barcode reference libraries for the identification of endangered Dalbergia timber species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
evergarden发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
TNT应助liyi采纳,获得10
刚刚
fyfly发布了新的文献求助10
1秒前
1秒前
1秒前
典雅的俊驰应助xun采纳,获得30
1秒前
开放的柚子完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
可靠远山关注了科研通微信公众号
3秒前
3秒前
HopeStar完成签到,获得积分10
3秒前
4秒前
失眠的霸完成签到,获得积分10
5秒前
RHLVE应助戚薇采纳,获得20
5秒前
5秒前
wjx发布了新的文献求助10
5秒前
shuangcheng发布了新的文献求助10
5秒前
charm12发布了新的文献求助10
5秒前
研友_VZG7GZ应助fyfly采纳,获得10
6秒前
6秒前
全糖完成签到,获得积分10
6秒前
吴志新完成签到,获得积分10
6秒前
心旷神怡发布了新的文献求助10
6秒前
Jiaocm完成签到,获得积分10
7秒前
海的蓝色是水完成签到,获得积分20
7秒前
天天快乐应助明天过后采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
所所应助吴真好采纳,获得10
9秒前
乐观小之应助wogua采纳,获得10
9秒前
隐形曼青应助wogua采纳,获得10
9秒前
10秒前
清脆惜寒应助Wang采纳,获得30
10秒前
标致乐双发布了新的文献求助10
11秒前
Catalina_S应助太阳采纳,获得20
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646