DNA barcoding authentication for the wood of eight endangeredDalbergiatimber species using machine learning approaches

DNA条形码 黄檀 濒危物种 条形码 物种鉴定 生物 分类器(UML) 鉴定(生物学) 植物 人工智能 计算机科学 进化生物学 生态学 操作系统 栖息地
作者
Tuo He,Lichao Jiao,Min Yu,Juan Guo,Xiaomei Jiang,Yafang Yin
出处
期刊:Holzforschung [De Gruyter]
卷期号:73 (3): 277-285 被引量:21
标识
DOI:10.1515/hf-2018-0076
摘要

Abstract Reliable wood identification and proof of the provenance of trees is the first step for combating illegal logging. DNA barcoding belongs to the promising tools in this regard, for which reliable methods and reference libraries are needed. Machine learning approaches (MLAs) are tailored to the necessities of DNA barcoding, which are based on mathematical multivaried analysis. In the present study, eight Dalbergia timber species were investigated in terms of their DNA sequences focusing on four barcodes (ITS2, mat K, trn H- psb A and trn L) by means of the MLAs BLOG and WEKA for wood species identification. The data material downloaded from NCBI (288 sequences) and taken from a previous study of the authors (153 DNA sequences) was taken as dataset for calibration. The MLAs’ effectivity was verified through identification of non-vouchered wood specimens. The results indicate that the SMO classifier as part of the WEKA approach performed the best (98%~100%) for discriminating the eight Dalbergia timber species. Moreover, the two-locus combination ITS2+ trn H- psb A showed the highest success rate. Furthermore, the non-vouchered wood specimens were successfully identified by means of ITS2+ trn H- psb A with the SMO classifier. The MLAs are successful in combi- nation with DNA barcode reference libraries for the identification of endangered Dalbergia timber species.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LmY大帅比发布了新的文献求助10
1秒前
1秒前
abby发布了新的文献求助10
2秒前
ding应助PURPLE采纳,获得30
2秒前
gyq发布了新的文献求助10
3秒前
只争朝夕应助Zhang采纳,获得10
4秒前
明亮的小蘑菇完成签到 ,获得积分10
5秒前
5秒前
唐唐发布了新的文献求助10
5秒前
函数完成签到 ,获得积分10
7秒前
wangpinyl完成签到,获得积分10
7秒前
7秒前
科研通AI6应助yyanxuemin919采纳,获得10
7秒前
大菊完成签到,获得积分10
8秒前
蓝天发布了新的文献求助10
9秒前
abby完成签到,获得积分10
10秒前
Stroeve发布了新的文献求助10
10秒前
LmY大帅比完成签到,获得积分10
10秒前
龙虾花甲发布了新的文献求助10
10秒前
10秒前
11秒前
yangyang发布了新的文献求助30
11秒前
12秒前
xuzb完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
哈尔行者完成签到,获得积分10
14秒前
14秒前
16秒前
CATH发布了新的文献求助10
17秒前
所所应助开拖拉机的芍药采纳,获得10
17秒前
杜小杜发布了新的文献求助10
18秒前
xuzb发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
yilin完成签到 ,获得积分10
20秒前
22秒前
wanci应助背后夜蓉采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563294
求助须知:如何正确求助?哪些是违规求助? 4648146
关于积分的说明 14683749
捐赠科研通 4590165
什么是DOI,文献DOI怎么找? 2518308
邀请新用户注册赠送积分活动 1491038
关于科研通互助平台的介绍 1462325