DNA barcoding authentication for the wood of eight endangeredDalbergiatimber species using machine learning approaches

DNA条形码 黄檀 濒危物种 条形码 物种鉴定 生物 分类器(UML) 鉴定(生物学) 植物 人工智能 计算机科学 进化生物学 生态学 操作系统 栖息地
作者
Tuo He,Lichao Jiao,Min Yu,Juan Guo,Xiaomei Jiang,Yafang Yin
出处
期刊:Holzforschung [De Gruyter]
卷期号:73 (3): 277-285 被引量:21
标识
DOI:10.1515/hf-2018-0076
摘要

Abstract Reliable wood identification and proof of the provenance of trees is the first step for combating illegal logging. DNA barcoding belongs to the promising tools in this regard, for which reliable methods and reference libraries are needed. Machine learning approaches (MLAs) are tailored to the necessities of DNA barcoding, which are based on mathematical multivaried analysis. In the present study, eight Dalbergia timber species were investigated in terms of their DNA sequences focusing on four barcodes (ITS2, mat K, trn H- psb A and trn L) by means of the MLAs BLOG and WEKA for wood species identification. The data material downloaded from NCBI (288 sequences) and taken from a previous study of the authors (153 DNA sequences) was taken as dataset for calibration. The MLAs’ effectivity was verified through identification of non-vouchered wood specimens. The results indicate that the SMO classifier as part of the WEKA approach performed the best (98%~100%) for discriminating the eight Dalbergia timber species. Moreover, the two-locus combination ITS2+ trn H- psb A showed the highest success rate. Furthermore, the non-vouchered wood specimens were successfully identified by means of ITS2+ trn H- psb A with the SMO classifier. The MLAs are successful in combi- nation with DNA barcode reference libraries for the identification of endangered Dalbergia timber species.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yxsxm发布了新的文献求助10
1秒前
romeo发布了新的文献求助10
1秒前
1秒前
1秒前
abb先生发布了新的文献求助10
2秒前
Owen应助王王采纳,获得10
2秒前
3秒前
药007完成签到,获得积分10
3秒前
Kai发布了新的文献求助10
3秒前
4秒前
1234发布了新的文献求助10
5秒前
彩色的紫南完成签到,获得积分10
5秒前
化学发布了新的文献求助10
5秒前
6秒前
妮妮完成签到 ,获得积分10
7秒前
7秒前
淡淡大山发布了新的文献求助10
8秒前
romeo发布了新的文献求助10
9秒前
9秒前
欢喜雪瑶发布了新的文献求助10
9秒前
9秒前
10秒前
benbengouj发布了新的文献求助10
10秒前
三月兔发布了新的文献求助10
10秒前
10秒前
lalala发布了新的文献求助10
11秒前
Zoe完成签到,获得积分10
13秒前
1234完成签到,获得积分10
13秒前
13秒前
Live发布了新的文献求助10
13秒前
romeo发布了新的文献求助10
14秒前
Bean完成签到,获得积分10
14秒前
14秒前
高玉峰发布了新的文献求助10
14秒前
14秒前
16秒前
adhere发布了新的文献求助10
16秒前
NexusExplorer应助三月兔采纳,获得10
17秒前
淡淡大山完成签到,获得积分20
17秒前
斯文败类应助缓慢的煎蛋采纳,获得10
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615168
求助须知:如何正确求助?哪些是违规求助? 4700058
关于积分的说明 14906318
捐赠科研通 4741317
什么是DOI,文献DOI怎么找? 2547956
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473774