重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

DNA barcoding authentication for the wood of eight endangeredDalbergiatimber species using machine learning approaches

DNA条形码 黄檀 濒危物种 条形码 物种鉴定 生物 分类器(UML) 鉴定(生物学) 植物 人工智能 计算机科学 进化生物学 生态学 操作系统 栖息地
作者
Tuo He,Lichao Jiao,Min Yu,Juan Guo,Xiaomei Jiang,Yafang Yin
出处
期刊:Holzforschung [De Gruyter]
卷期号:73 (3): 277-285 被引量:21
标识
DOI:10.1515/hf-2018-0076
摘要

Abstract Reliable wood identification and proof of the provenance of trees is the first step for combating illegal logging. DNA barcoding belongs to the promising tools in this regard, for which reliable methods and reference libraries are needed. Machine learning approaches (MLAs) are tailored to the necessities of DNA barcoding, which are based on mathematical multivaried analysis. In the present study, eight Dalbergia timber species were investigated in terms of their DNA sequences focusing on four barcodes (ITS2, mat K, trn H- psb A and trn L) by means of the MLAs BLOG and WEKA for wood species identification. The data material downloaded from NCBI (288 sequences) and taken from a previous study of the authors (153 DNA sequences) was taken as dataset for calibration. The MLAs’ effectivity was verified through identification of non-vouchered wood specimens. The results indicate that the SMO classifier as part of the WEKA approach performed the best (98%~100%) for discriminating the eight Dalbergia timber species. Moreover, the two-locus combination ITS2+ trn H- psb A showed the highest success rate. Furthermore, the non-vouchered wood specimens were successfully identified by means of ITS2+ trn H- psb A with the SMO classifier. The MLAs are successful in combi- nation with DNA barcode reference libraries for the identification of endangered Dalbergia timber species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
Orange应助SciKid524采纳,获得10
刚刚
常璐旸发布了新的文献求助20
1秒前
1秒前
Jeff发布了新的文献求助10
1秒前
秋海棠发布了新的文献求助30
1秒前
YXY发布了新的文献求助10
1秒前
何my完成签到 ,获得积分10
2秒前
yayaya发布了新的文献求助10
2秒前
2秒前
森林木发布了新的文献求助10
2秒前
Science发布了新的文献求助10
3秒前
张权完成签到,获得积分10
3秒前
4秒前
斯文败类应助Sunhignway采纳,获得10
4秒前
牛与马发布了新的文献求助10
4秒前
Lucas应助鸢尾不是板蓝根采纳,获得10
4秒前
4秒前
4秒前
老迟到的曼青完成签到,获得积分10
4秒前
朵朵发布了新的文献求助10
4秒前
5秒前
酷波er应助包容翰采纳,获得10
5秒前
木木木木发布了新的文献求助30
5秒前
6秒前
6秒前
是多少发布了新的文献求助10
6秒前
6秒前
丘比特应助可靠月亮采纳,获得10
7秒前
牛与马完成签到,获得积分10
7秒前
qw1完成签到,获得积分20
7秒前
7秒前
8秒前
8秒前
8秒前
领导范儿应助最最采纳,获得10
9秒前
iNk应助炙热觅海采纳,获得20
9秒前
9秒前
阿斯顿发广告完成签到,获得积分10
10秒前
Ava应助yzy采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466510
求助须知:如何正确求助?哪些是违规求助? 4570363
关于积分的说明 14324919
捐赠科研通 4496890
什么是DOI,文献DOI怎么找? 2463583
邀请新用户注册赠送积分活动 1452557
关于科研通互助平台的介绍 1427545