DNA barcoding authentication for the wood of eight endangeredDalbergiatimber species using machine learning approaches

DNA条形码 黄檀 濒危物种 条形码 物种鉴定 生物 分类器(UML) 鉴定(生物学) 植物 人工智能 计算机科学 进化生物学 生态学 操作系统 栖息地
作者
Tuo He,Lichao Jiao,Min Yu,Juan Guo,Xiaomei Jiang,Yafang Yin
出处
期刊:Holzforschung [De Gruyter]
卷期号:73 (3): 277-285 被引量:21
标识
DOI:10.1515/hf-2018-0076
摘要

Abstract Reliable wood identification and proof of the provenance of trees is the first step for combating illegal logging. DNA barcoding belongs to the promising tools in this regard, for which reliable methods and reference libraries are needed. Machine learning approaches (MLAs) are tailored to the necessities of DNA barcoding, which are based on mathematical multivaried analysis. In the present study, eight Dalbergia timber species were investigated in terms of their DNA sequences focusing on four barcodes (ITS2, mat K, trn H- psb A and trn L) by means of the MLAs BLOG and WEKA for wood species identification. The data material downloaded from NCBI (288 sequences) and taken from a previous study of the authors (153 DNA sequences) was taken as dataset for calibration. The MLAs’ effectivity was verified through identification of non-vouchered wood specimens. The results indicate that the SMO classifier as part of the WEKA approach performed the best (98%~100%) for discriminating the eight Dalbergia timber species. Moreover, the two-locus combination ITS2+ trn H- psb A showed the highest success rate. Furthermore, the non-vouchered wood specimens were successfully identified by means of ITS2+ trn H- psb A with the SMO classifier. The MLAs are successful in combi- nation with DNA barcode reference libraries for the identification of endangered Dalbergia timber species.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助小黑采纳,获得10
刚刚
量子星尘发布了新的文献求助10
2秒前
JOUJOU发布了新的文献求助10
2秒前
2秒前
Yeshenyue完成签到,获得积分10
2秒前
今后应助从容冷之采纳,获得10
3秒前
congconglyu完成签到,获得积分10
3秒前
大模型应助天真千易采纳,获得10
3秒前
风清扬发布了新的文献求助10
3秒前
天天快乐应助天真千易采纳,获得10
3秒前
负责的皮卡丘应助xiaoting采纳,获得30
3秒前
汉堡包应助天真千易采纳,获得10
4秒前
NexusExplorer应助天真千易采纳,获得10
4秒前
情怀应助天真千易采纳,获得10
4秒前
彭于晏应助天真千易采纳,获得10
4秒前
可爱的函函应助天真千易采纳,获得10
4秒前
打打应助天真千易采纳,获得10
4秒前
赘婿应助天真千易采纳,获得10
4秒前
Jasper应助天真千易采纳,获得30
4秒前
5秒前
orixero应助ruaruaburua采纳,获得10
6秒前
韩梅完成签到,获得积分10
7秒前
哥斯拉发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
老大车完成签到,获得积分20
9秒前
10秒前
研友_VZG7GZ应助一坨采纳,获得20
10秒前
LijinJiang发布了新的文献求助10
10秒前
刘gugu完成签到,获得积分10
10秒前
赵玉龙发布了新的文献求助30
10秒前
浮游应助Yolo采纳,获得10
11秒前
11秒前
Morton发布了新的文献求助10
11秒前
逸风望发布了新的文献求助10
11秒前
科研通AI6应助梅代匕花采纳,获得20
11秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525198
求助须知:如何正确求助?哪些是违规求助? 4615517
关于积分的说明 14548794
捐赠科研通 4553583
什么是DOI,文献DOI怎么找? 2495376
邀请新用户注册赠送积分活动 1475913
关于科研通互助平台的介绍 1447670