清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DNA barcoding authentication for the wood of eight endangeredDalbergiatimber species using machine learning approaches

DNA条形码 黄檀 濒危物种 条形码 物种鉴定 生物 分类器(UML) 鉴定(生物学) 植物 人工智能 计算机科学 进化生物学 生态学 操作系统 栖息地
作者
Tuo He,Lichao Jiao,Min Yu,Juan Guo,Xiaomei Jiang,Yafang Yin
出处
期刊:Holzforschung [De Gruyter]
卷期号:73 (3): 277-285 被引量:21
标识
DOI:10.1515/hf-2018-0076
摘要

Abstract Reliable wood identification and proof of the provenance of trees is the first step for combating illegal logging. DNA barcoding belongs to the promising tools in this regard, for which reliable methods and reference libraries are needed. Machine learning approaches (MLAs) are tailored to the necessities of DNA barcoding, which are based on mathematical multivaried analysis. In the present study, eight Dalbergia timber species were investigated in terms of their DNA sequences focusing on four barcodes (ITS2, mat K, trn H- psb A and trn L) by means of the MLAs BLOG and WEKA for wood species identification. The data material downloaded from NCBI (288 sequences) and taken from a previous study of the authors (153 DNA sequences) was taken as dataset for calibration. The MLAs’ effectivity was verified through identification of non-vouchered wood specimens. The results indicate that the SMO classifier as part of the WEKA approach performed the best (98%~100%) for discriminating the eight Dalbergia timber species. Moreover, the two-locus combination ITS2+ trn H- psb A showed the highest success rate. Furthermore, the non-vouchered wood specimens were successfully identified by means of ITS2+ trn H- psb A with the SMO classifier. The MLAs are successful in combi- nation with DNA barcode reference libraries for the identification of endangered Dalbergia timber species.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋秋完成签到 ,获得积分10
1秒前
会写日记的乌龟先生完成签到 ,获得积分10
3秒前
悄悄完成签到 ,获得积分10
11秒前
TL完成签到 ,获得积分10
12秒前
carl完成签到,获得积分10
13秒前
回忆应助朱鑫汗采纳,获得10
13秒前
害怕的冰颜完成签到 ,获得积分10
31秒前
追梦完成签到,获得积分10
39秒前
小小咸鱼完成签到 ,获得积分10
40秒前
陈A完成签到 ,获得积分10
45秒前
秋夜临完成签到,获得积分0
1分钟前
跳跃的鹏飞完成签到 ,获得积分0
1分钟前
海英完成签到,获得积分10
1分钟前
luobote完成签到 ,获得积分10
1分钟前
吕佳完成签到 ,获得积分10
1分钟前
限量版小祸害完成签到 ,获得积分10
1分钟前
qiqi完成签到,获得积分10
1分钟前
1分钟前
我是老大应助Joy采纳,获得10
1分钟前
qiqiqiqiqi完成签到 ,获得积分10
1分钟前
Singularity完成签到,获得积分0
1分钟前
早睡早起身体好Q完成签到 ,获得积分10
1分钟前
沉静香氛完成签到 ,获得积分10
1分钟前
naczx完成签到,获得积分0
1分钟前
李志全完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
xgx984完成签到,获得积分10
1分钟前
共享精神应助keke采纳,获得10
2分钟前
Nene完成签到 ,获得积分10
2分钟前
ChatGPT完成签到,获得积分10
2分钟前
大模型应助Zhuyin采纳,获得10
2分钟前
2分钟前
MoodMeed完成签到,获得积分10
2分钟前
2分钟前
Joy发布了新的文献求助10
2分钟前
keke发布了新的文献求助10
2分钟前
顺利问玉完成签到 ,获得积分10
2分钟前
害羞的裘完成签到 ,获得积分10
2分钟前
此时此刻完成签到 ,获得积分10
2分钟前
SciGPT应助Joy采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612035
求助须知:如何正确求助?哪些是违规求助? 4696186
关于积分的说明 14890583
捐赠科研通 4731071
什么是DOI,文献DOI怎么找? 2546115
邀请新用户注册赠送积分活动 1510425
关于科研通互助平台的介绍 1473310