4D X-Ray CT Reconstruction using Multi-Slice Fusion

计算机科学 迭代重建 降噪 卷积神经网络 加性高斯白噪声 算法 人工智能 先验概率 模式识别(心理学) 计算机视觉 白噪声 电信 贝叶斯概率
作者
Soumendu Majee,Thilo Balke,Craig A. J. Kemp,Gregery T. Buzzard,Charles A. Bouman
标识
DOI:10.1109/iccphot.2019.8747328
摘要

There is an increasing need to reconstruct objects in four or more dimensions corresponding to space, time and other independent parameters. The best 4D reconstruction algorithms use regularized iterative reconstruction approaches such as model based iterative reconstruction (MBIR), which depends critically on the quality of the prior modeling. Recently, Plug-and-Play methods have been shown to be an effective way to incorporate advanced prior models using state-of-the-art denoising algorithms designed to remove additive white Gaussian noise (AWGN). However, state-of-the-art denoising algorithms such as BM4D and deep convolutional neural networks (CNNs) are primarily available for 2D and sometimes 3D images. In particular, CNNs are difficult and computationally expensive to implement in four or more dimensions, and training may be impossible if there is no associated high-dimensional training data.In this paper, we present Multi-Slice Fusion, a novel algorithm for 4D and higher-dimensional reconstruction, based on the fusion of multiple low-dimensional denoisers. Our approach uses multi-agent consensus equilibrium (MACE), an extension of Plug-and-Play, as a framework for integrating the multiple lower-dimensional prior models. We apply our method to the problem of 4D cone-beam X-ray CT reconstruction for Non Destructive Evaluation (NDE) of moving parts. This is done by solving the MACE equations using lower-dimensional CNN denoisers implemented in parallel on a heterogeneous cluster. Results on experimental CT data demonstrate that Multi-Slice Fusion can substantially improve the quality of reconstructions relative to traditional 4D priors, while also being practical to implement and train.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jie发布了新的文献求助10
刚刚
zlx完成签到 ,获得积分10
1秒前
DQ发布了新的文献求助10
1秒前
1秒前
陶军辉完成签到 ,获得积分10
2秒前
Jasper应助莫茹采纳,获得10
4秒前
7秒前
yyy_完成签到,获得积分20
7秒前
田様应助hhhhhh采纳,获得10
8秒前
9秒前
12秒前
12秒前
yiyimx发布了新的文献求助10
13秒前
英姑应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
1+1应助科研通管家采纳,获得10
15秒前
行走家应助科研通管家采纳,获得10
15秒前
喜悦成威应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
jwx应助科研通管家采纳,获得10
15秒前
1+1应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
HEIKU应助科研通管家采纳,获得10
16秒前
yz应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
1+1应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
隐形曼青应助科研通管家采纳,获得20
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
HEIKU应助科研通管家采纳,获得10
16秒前
研友_Z6Q45n应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
17秒前
1+1应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671625
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779625
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610180
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093