4D X-Ray CT Reconstruction using Multi-Slice Fusion

计算机科学 迭代重建 降噪 卷积神经网络 加性高斯白噪声 算法 人工智能 先验概率 模式识别(心理学) 计算机视觉 白噪声 电信 贝叶斯概率
作者
Soumendu Majee,Thilo Balke,Craig A. J. Kemp,Gregery T. Buzzard,Charles A. Bouman
标识
DOI:10.1109/iccphot.2019.8747328
摘要

There is an increasing need to reconstruct objects in four or more dimensions corresponding to space, time and other independent parameters. The best 4D reconstruction algorithms use regularized iterative reconstruction approaches such as model based iterative reconstruction (MBIR), which depends critically on the quality of the prior modeling. Recently, Plug-and-Play methods have been shown to be an effective way to incorporate advanced prior models using state-of-the-art denoising algorithms designed to remove additive white Gaussian noise (AWGN). However, state-of-the-art denoising algorithms such as BM4D and deep convolutional neural networks (CNNs) are primarily available for 2D and sometimes 3D images. In particular, CNNs are difficult and computationally expensive to implement in four or more dimensions, and training may be impossible if there is no associated high-dimensional training data.In this paper, we present Multi-Slice Fusion, a novel algorithm for 4D and higher-dimensional reconstruction, based on the fusion of multiple low-dimensional denoisers. Our approach uses multi-agent consensus equilibrium (MACE), an extension of Plug-and-Play, as a framework for integrating the multiple lower-dimensional prior models. We apply our method to the problem of 4D cone-beam X-ray CT reconstruction for Non Destructive Evaluation (NDE) of moving parts. This is done by solving the MACE equations using lower-dimensional CNN denoisers implemented in parallel on a heterogeneous cluster. Results on experimental CT data demonstrate that Multi-Slice Fusion can substantially improve the quality of reconstructions relative to traditional 4D priors, while also being practical to implement and train.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐的小鸽子完成签到,获得积分10
刚刚
刚刚
12334完成签到,获得积分10
1秒前
yy完成签到,获得积分10
1秒前
alho完成签到 ,获得积分10
1秒前
2秒前
女娇娥完成签到,获得积分10
2秒前
风趣采白完成签到,获得积分10
2秒前
2秒前
谢花花完成签到 ,获得积分10
2秒前
xxx_oo完成签到,获得积分10
2秒前
啊哦完成签到,获得积分10
3秒前
3秒前
zwjy完成签到,获得积分10
3秒前
wawa完成签到 ,获得积分10
3秒前
橘崽完成签到,获得积分10
3秒前
4秒前
Lori发布了新的文献求助30
4秒前
闪闪的又亦完成签到 ,获得积分10
4秒前
小夫同学完成签到,获得积分10
4秒前
Galaxy完成签到,获得积分10
5秒前
5秒前
Ridley发布了新的文献求助10
5秒前
奋斗的剑发布了新的文献求助10
6秒前
6秒前
完美世界应助排骨炖豆角采纳,获得10
6秒前
林林总总完成签到,获得积分10
7秒前
SciGPT应助123采纳,获得10
7秒前
8秒前
田様应助鲍binyu采纳,获得20
8秒前
粒粒发布了新的文献求助20
8秒前
丘山杉完成签到,获得积分10
8秒前
ygg发布了新的文献求助10
9秒前
王铂然完成签到 ,获得积分10
9秒前
9秒前
小马完成签到,获得积分10
9秒前
鸡脖肠发布了新的文献求助10
9秒前
10秒前
10秒前
June完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960377
求助须知:如何正确求助?哪些是违规求助? 3506460
关于积分的说明 11130713
捐赠科研通 3238673
什么是DOI,文献DOI怎么找? 1789847
邀请新用户注册赠送积分活动 871964
科研通“疑难数据库(出版商)”最低求助积分说明 803099