假电容
材料科学
重量分析
化学工程
电池(电)
限制电流
电流密度
介孔材料
功率密度
析氧
储能
多孔性
电极
纳米结构
钴
纳米技术
超级电容器
催化作用
电化学
化学
复合材料
冶金
功率(物理)
物理化学
有机化学
生物化学
工程类
量子力学
物理
作者
Peng Tan,Bin Chen,Haoran Xu,Weizi Cai,Wei He,Meng Ni
出处
期刊:Energy
[Elsevier]
日期:2018-10-29
卷期号:166: 1241-1248
被引量:32
标识
DOI:10.1016/j.energy.2018.10.161
摘要
Efficient electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial for rechargeable Zn-air batteries. We report porous Co3O4 nanoplates with the average size and thickness of ∼100 and ∼20 nm, respectively, and a surface area of 98.65 m2 g−1. The mesoporous nanostructure shortens the lengths for ion/electron transport and provides abundant reaction sites. In the alkaline solution, the Co3O4 nanoplates exhibit a comparable limiting current density to that of Pt/C in the ORR and a superior activity in the OER. Redox reactions corresponding to the oxidation/reduction of cobalt species with a high pseudocapacitance and stability are observed, indicating the multifunctional properties. Using Co3O4 nanoplates in the air electrode, the Zn-air battery delivers a maximum power density of 59.7 mW cm−2. At a current density of 1 mA cm−2, a gravimetric energy density of 901.6 Wh kgZn−1 and an energy efficiency of 67.3% are achieved. Moreover, the voltage gaps between discharge and charge as well as the energy efficiency of 58% at 10 mA cm−2 are maintained for 100 cycles. The porous Co3O4 nanoplate is a promising active material for efficient Zn-air batteries with excellent cycling stability and high energy density.
科研通智能强力驱动
Strongly Powered by AbleSci AI