Engineering Al2O3 atomic layer deposition: Enhanced hard carbon-electrolyte interface towards practical sodium ion batteries

材料科学 电解质 电极 原子层沉积 化学工程 离子 接口(物质) 锂离子电池的纳米结构 沉积(地质) 图层(电子) 电化学 无机化学 纳米技术 碳纤维 复合材料 冶金 有机化学 化学 复合数 沉积物 毛细管数 毛细管作用 古生物学 物理化学 工程类 生物
作者
Haiyan Lu,Xiaoyang Chen,Yanlong Jia,Hui Chen,Yunxiao Wang,Xinping Ai,Hanxi Yang,Yuliang Cao
出处
期刊:Nano Energy [Elsevier]
卷期号:64: 103903-103903 被引量:192
标识
DOI:10.1016/j.nanoen.2019.103903
摘要

Hard carbon has been regarded as one of the most promising anodes for sodium-ion batteries due to its low cost and high reverisble capacity. However, the practical use of hard carbon materials has been hindered by its limited initial Coulombic efficiency (ICE) and cycling stability. Herein, ultrathin Al2O3-coated hard carbon materials are synthesized through direct atomic layer deposition (ALD). When served as an anode in sodium-ion batteries, the optimal Al2O3-coated hard carbon electrode delivers a high reversible capacity (355 mA h g−1), ICE (75%) and superior cycling stability (a capacity retention of 90.7% over 150 cycles) compared with the bare one (260.9 mA h g−1, ICE: 67%, capacity retention: 82.8%). The deposited Al2O3 film as an “artificial solid electrolyte interface (SEI)” on the electrode surface, efficiently suppresses the decomposition of the electrolyte, leading to high ICE and cycling stability. Meanwhile, the Al2O3-coated film reduces interfacial resistance and electrode overpotential, resulting in an increased reversible capacity. A critical thickness (about 2 nm) of Al2O3-artificial SEI is also proposed to meet the requirements to electron and ion transport. Therefore, this work provides a general and straightforward surface modification method to enhance the interface stability of hard carbon anodes for high-performance sodium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助蔡徐坤采纳,获得10
1秒前
2秒前
2秒前
lukescholar发布了新的文献求助10
2秒前
燕小丙完成签到,获得积分10
2秒前
2秒前
玲℃完成签到,获得积分10
2秒前
香蕉觅云应助大111采纳,获得10
2秒前
乐乐应助玛瑙采纳,获得10
2秒前
4秒前
4秒前
天空之城发布了新的文献求助10
4秒前
wanci应助王一博采纳,获得10
4秒前
5秒前
5秒前
哈哈哈哈完成签到,获得积分10
6秒前
诗恋菲宇完成签到,获得积分10
6秒前
7秒前
7秒前
xcl完成签到,获得积分10
7秒前
Z126发布了新的文献求助30
7秒前
7秒前
Jasper应助lulu采纳,获得30
8秒前
8秒前
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
June发布了新的文献求助30
9秒前
CodeCraft应助晓世采纳,获得10
9秒前
可乐加冰发布了新的文献求助10
9秒前
ZBQ发布了新的文献求助10
10秒前
10秒前
科研通AI6应助new采纳,获得80
11秒前
Gracebing发布了新的文献求助10
11秒前
calm发布了新的文献求助10
11秒前
TTTTT完成签到,获得积分10
11秒前
靖雁完成签到,获得积分10
11秒前
xxxx完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667453
求助须知:如何正确求助?哪些是违规求助? 4885755
关于积分的说明 15120132
捐赠科研通 4826235
什么是DOI,文献DOI怎么找? 2583865
邀请新用户注册赠送积分活动 1537959
关于科研通互助平台的介绍 1496082