Preliminary study on the application of deep learning system to diagnosis of Sjögren's syndrome on CT images

医学 医学诊断 深度学习 放射科 计算机科学 人工智能
作者
Yoshitaka Kise,H. Ikeda,Takeshi Fujii,Motoki Fukuda,Yoshiko Ariji,Hiroshi Fujita,Akitoshi Katsumata,Eiichiro Ariji
出处
期刊:Dentomaxillofacial Radiology [Oxford University Press]
卷期号:48 (6): 20190019-20190019 被引量:43
标识
DOI:10.1259/dmfr.20190019
摘要

This study estimated the diagnostic performance of a deep learning system for detection of Sjögren's syndrome (SjS) on CT, and compared it with the performance of radiologists.CT images were assessed from 25 patients confirmed to have SjS based on the both Japanese criteria and American-European Consensus Group criteria and 25 control subjects with no parotid gland abnormalities who were examined for other diseases. 10 CT slices were obtained for each patient. From among the total of 500 CT images, 400 images (200 from 20 SjS patients and 200 from 20 control subjects) were employed as the training data set and 100 images (50 from 5 SjS patients and 50 from 5 control subjects) were used as the test data set. The performance of a deep learning system for diagnosing SjS from the CT images was compared with the diagnoses made by six radiologists (three experienced and three inexperienced radiologists).The accuracy, sensitivity, and specificity of the deep learning system were 96.0%, 100% and 92.0%, respectively. The corresponding values of experienced radiologists were 98.3%, 99.3% and 97.3% being equivalent to the deep learning, while those of inexperienced radiologists were 83.5%, 77.9% and 89.2%. The area under the curve of inexperienced radiologists were significantly different from those of the deep learning system and the experienced radiologists.The deep learning system showed a high diagnostic performance for SjS, suggesting that it could possibly be used for diagnostic support when interpreting CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助科研通管家采纳,获得10
1秒前
Theprisoners应助科研通管家采纳,获得20
1秒前
ED应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
ED应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
powell应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
木木应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
powell应助科研通管家采纳,获得10
3秒前
yps完成签到 ,获得积分10
5秒前
5秒前
只要平凡发布了新的文献求助10
5秒前
华仔应助专注的语堂采纳,获得10
6秒前
gy关闭了gy文献求助
7秒前
慕青应助XM采纳,获得10
7秒前
成就觅翠发布了新的文献求助10
9秒前
9秒前
高山七石完成签到,获得积分10
9秒前
10秒前
小秦秦完成签到 ,获得积分10
11秒前
dophin完成签到,获得积分10
12秒前
沉默书蕾发布了新的文献求助10
13秒前
16秒前
彭于晏应助dophin采纳,获得10
16秒前
谭玲慧发布了新的文献求助10
20秒前
称心妙菱完成签到,获得积分10
21秒前
24秒前
一颗烂番茄完成签到 ,获得积分10
24秒前
稗子酿的酒完成签到 ,获得积分10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993903
求助须知:如何正确求助?哪些是违规求助? 3534470
关于积分的说明 11265717
捐赠科研通 3274344
什么是DOI,文献DOI怎么找? 1806358
邀请新用户注册赠送积分活动 883170
科研通“疑难数据库(出版商)”最低求助积分说明 809712