亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preliminary study on the application of deep learning system to diagnosis of Sjögren's syndrome on CT images

医学 医学诊断 深度学习 放射科 计算机科学 人工智能
作者
Yoshitaka Kise,H. Ikeda,Takeshi Fujii,Motoki Fukuda,Yoshiko Ariji,Hiroshi Fujita,Akitoshi Katsumata,Eiichiro Ariji
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
卷期号:48 (6): 20190019-20190019 被引量:43
标识
DOI:10.1259/dmfr.20190019
摘要

This study estimated the diagnostic performance of a deep learning system for detection of Sjögren's syndrome (SjS) on CT, and compared it with the performance of radiologists.CT images were assessed from 25 patients confirmed to have SjS based on the both Japanese criteria and American-European Consensus Group criteria and 25 control subjects with no parotid gland abnormalities who were examined for other diseases. 10 CT slices were obtained for each patient. From among the total of 500 CT images, 400 images (200 from 20 SjS patients and 200 from 20 control subjects) were employed as the training data set and 100 images (50 from 5 SjS patients and 50 from 5 control subjects) were used as the test data set. The performance of a deep learning system for diagnosing SjS from the CT images was compared with the diagnoses made by six radiologists (three experienced and three inexperienced radiologists).The accuracy, sensitivity, and specificity of the deep learning system were 96.0%, 100% and 92.0%, respectively. The corresponding values of experienced radiologists were 98.3%, 99.3% and 97.3% being equivalent to the deep learning, while those of inexperienced radiologists were 83.5%, 77.9% and 89.2%. The area under the curve of inexperienced radiologists were significantly different from those of the deep learning system and the experienced radiologists.The deep learning system showed a high diagnostic performance for SjS, suggesting that it could possibly be used for diagnostic support when interpreting CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干的人完成签到,获得积分10
刚刚
小黑完成签到,获得积分10
1秒前
zyq完成签到,获得积分10
4秒前
Jasper应助一休采纳,获得10
6秒前
7秒前
zyq发布了新的文献求助10
10秒前
Emma发布了新的文献求助10
11秒前
友好小土豆完成签到 ,获得积分10
15秒前
17秒前
18秒前
18秒前
22秒前
xjz发布了新的文献求助10
23秒前
明天更好完成签到 ,获得积分10
23秒前
24秒前
呋喃发布了新的文献求助10
24秒前
李健应助Emma采纳,获得10
24秒前
26秒前
26秒前
sansan完成签到 ,获得积分10
30秒前
大模型应助郝优佳采纳,获得10
33秒前
斯文败类应助呋喃采纳,获得100
38秒前
45秒前
47秒前
hxr完成签到 ,获得积分10
47秒前
小蘑菇应助Dec采纳,获得10
48秒前
江南之南完成签到 ,获得积分10
49秒前
oleskarabach发布了新的文献求助10
49秒前
ZJ完成签到,获得积分10
50秒前
55秒前
57秒前
科研通AI6应助zyq采纳,获得10
59秒前
1分钟前
fybd88发布了新的文献求助10
1分钟前
1分钟前
月亮不营业完成签到 ,获得积分10
1分钟前
1分钟前
悦耳笑蓝完成签到,获得积分10
1分钟前
1分钟前
悦耳笑蓝发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407675
求助须知:如何正确求助?哪些是违规求助? 4525191
关于积分的说明 14101408
捐赠科研通 4439018
什么是DOI,文献DOI怎么找? 2436558
邀请新用户注册赠送积分活动 1428528
关于科研通互助平台的介绍 1406604