亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preliminary study on the application of deep learning system to diagnosis of Sjögren's syndrome on CT images

医学 医学诊断 深度学习 放射科 计算机科学 人工智能
作者
Yoshitaka Kise,H. Ikeda,Takeshi Fujii,Motoki Fukuda,Yoshiko Ariji,Hiroshi Fujita,Akitoshi Katsumata,Eiichiro Ariji
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
卷期号:48 (6): 20190019-20190019 被引量:43
标识
DOI:10.1259/dmfr.20190019
摘要

This study estimated the diagnostic performance of a deep learning system for detection of Sjögren's syndrome (SjS) on CT, and compared it with the performance of radiologists.CT images were assessed from 25 patients confirmed to have SjS based on the both Japanese criteria and American-European Consensus Group criteria and 25 control subjects with no parotid gland abnormalities who were examined for other diseases. 10 CT slices were obtained for each patient. From among the total of 500 CT images, 400 images (200 from 20 SjS patients and 200 from 20 control subjects) were employed as the training data set and 100 images (50 from 5 SjS patients and 50 from 5 control subjects) were used as the test data set. The performance of a deep learning system for diagnosing SjS from the CT images was compared with the diagnoses made by six radiologists (three experienced and three inexperienced radiologists).The accuracy, sensitivity, and specificity of the deep learning system were 96.0%, 100% and 92.0%, respectively. The corresponding values of experienced radiologists were 98.3%, 99.3% and 97.3% being equivalent to the deep learning, while those of inexperienced radiologists were 83.5%, 77.9% and 89.2%. The area under the curve of inexperienced radiologists were significantly different from those of the deep learning system and the experienced radiologists.The deep learning system showed a high diagnostic performance for SjS, suggesting that it could possibly be used for diagnostic support when interpreting CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
邓佳鑫Alan应助barretace采纳,获得10
7秒前
啊大大完成签到,获得积分10
14秒前
17秒前
17秒前
胡萝卜完成签到 ,获得积分10
20秒前
食盐同学发布了新的文献求助10
21秒前
漠北发布了新的文献求助10
24秒前
科研通AI2S应助wszzb采纳,获得10
27秒前
Abdurrahman完成签到,获得积分10
35秒前
Z小姐完成签到 ,获得积分10
50秒前
55秒前
研友_ZAVbe8完成签到,获得积分0
1分钟前
pinklay完成签到 ,获得积分10
1分钟前
科研通AI2S应助gougoudy采纳,获得10
1分钟前
豆包发布了新的文献求助10
1分钟前
1分钟前
wcj发布了新的文献求助10
1分钟前
Fzx2664242918发布了新的文献求助10
1分钟前
1分钟前
Fzx2664242918完成签到,获得积分10
1分钟前
碳烤小黑茶完成签到 ,获得积分10
1分钟前
light发布了新的文献求助10
1分钟前
1分钟前
活泼蛋挞发布了新的文献求助10
2分钟前
2分钟前
2分钟前
虚心的冥王星完成签到,获得积分10
2分钟前
李爱国应助虚心的冥王星采纳,获得10
2分钟前
Hayat应助科研通管家采纳,获得10
2分钟前
wszzb完成签到,获得积分10
2分钟前
谦让小咖啡完成签到 ,获得积分10
2分钟前
樱桃猴子完成签到,获得积分10
2分钟前
爱静静完成签到,获得积分0
2分钟前
NexusExplorer应助欢呼的忘幽采纳,获得10
3分钟前
雪白的面包完成签到 ,获得积分10
3分钟前
picapica668完成签到,获得积分10
3分钟前
魏白晴完成签到,获得积分10
3分钟前
欢呼的忘幽完成签到,获得积分10
3分钟前
3分钟前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130136
求助须知:如何正确求助?哪些是违规求助? 2780917
关于积分的说明 7750401
捐赠科研通 2436101
什么是DOI,文献DOI怎么找? 1294525
科研通“疑难数据库(出版商)”最低求助积分说明 623716
版权声明 600570