亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Preliminary study on the application of deep learning system to diagnosis of Sjögren's syndrome on CT images

医学 医学诊断 深度学习 放射科 计算机科学 人工智能
作者
Yoshitaka Kise,H. Ikeda,Takeshi Fujii,Motoki Fukuda,Yoshiko Ariji,Hiroshi Fujita,Akitoshi Katsumata,Eiichiro Ariji
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
卷期号:48 (6): 20190019-20190019 被引量:43
标识
DOI:10.1259/dmfr.20190019
摘要

This study estimated the diagnostic performance of a deep learning system for detection of Sjögren's syndrome (SjS) on CT, and compared it with the performance of radiologists.CT images were assessed from 25 patients confirmed to have SjS based on the both Japanese criteria and American-European Consensus Group criteria and 25 control subjects with no parotid gland abnormalities who were examined for other diseases. 10 CT slices were obtained for each patient. From among the total of 500 CT images, 400 images (200 from 20 SjS patients and 200 from 20 control subjects) were employed as the training data set and 100 images (50 from 5 SjS patients and 50 from 5 control subjects) were used as the test data set. The performance of a deep learning system for diagnosing SjS from the CT images was compared with the diagnoses made by six radiologists (three experienced and three inexperienced radiologists).The accuracy, sensitivity, and specificity of the deep learning system were 96.0%, 100% and 92.0%, respectively. The corresponding values of experienced radiologists were 98.3%, 99.3% and 97.3% being equivalent to the deep learning, while those of inexperienced radiologists were 83.5%, 77.9% and 89.2%. The area under the curve of inexperienced radiologists were significantly different from those of the deep learning system and the experienced radiologists.The deep learning system showed a high diagnostic performance for SjS, suggesting that it could possibly be used for diagnostic support when interpreting CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc发布了新的文献求助10
7秒前
情怀应助S1mple采纳,获得10
11秒前
鹏笑完成签到,获得积分10
13秒前
李健的小迷弟应助Vu1nerable采纳,获得10
42秒前
大模型应助Vu1nerable采纳,获得10
1分钟前
cc关注了科研通微信公众号
1分钟前
科研通AI2S应助Vu1nerable采纳,获得10
1分钟前
ky小白白完成签到 ,获得积分10
1分钟前
搜集达人应助Vu1nerable采纳,获得10
2分钟前
尊敬冰姬完成签到,获得积分10
2分钟前
竹青发布了新的文献求助10
2分钟前
天天快乐应助Vu1nerable采纳,获得10
2分钟前
2分钟前
乐乐应助科研通管家采纳,获得10
2分钟前
彭于晏应助科研通管家采纳,获得10
2分钟前
尊敬冰姬发布了新的文献求助10
2分钟前
Hello应助Vu1nerable采纳,获得10
3分钟前
在水一方完成签到,获得积分0
3分钟前
鳄鱼发布了新的文献求助10
3分钟前
3分钟前
leapper完成签到 ,获得积分10
4分钟前
顾矜应助Vu1nerable采纳,获得10
4分钟前
4分钟前
4分钟前
cc完成签到,获得积分10
4分钟前
乐乐应助科研通管家采纳,获得10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
科目三应助26岁顶级保安采纳,获得10
4分钟前
科研通AI6应助Vu1nerable采纳,获得10
4分钟前
叫滚滚发布了新的文献求助10
4分钟前
Yuki完成签到 ,获得积分10
4分钟前
check003完成签到,获得积分10
5分钟前
陈尹蓝完成签到 ,获得积分10
5分钟前
NexusExplorer应助Vu1nerable采纳,获得10
5分钟前
5分钟前
zhou发布了新的文献求助10
5分钟前
6分钟前
Dasein完成签到 ,获得积分10
6分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5335623
求助须知:如何正确求助?哪些是违规求助? 4473305
关于积分的说明 13921541
捐赠科研通 4367634
什么是DOI,文献DOI怎么找? 2399702
邀请新用户注册赠送积分活动 1392801
关于科研通互助平台的介绍 1364193