Preliminary study on the application of deep learning system to diagnosis of Sjögren's syndrome on CT images

医学 医学诊断 深度学习 放射科 计算机科学 人工智能
作者
Yoshitaka Kise,H. Ikeda,Takeshi Fujii,Motoki Fukuda,Yoshiko Ariji,Hiroshi Fujita,Akitoshi Katsumata,Eiichiro Ariji
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
卷期号:48 (6): 20190019-20190019 被引量:43
标识
DOI:10.1259/dmfr.20190019
摘要

This study estimated the diagnostic performance of a deep learning system for detection of Sjögren's syndrome (SjS) on CT, and compared it with the performance of radiologists.CT images were assessed from 25 patients confirmed to have SjS based on the both Japanese criteria and American-European Consensus Group criteria and 25 control subjects with no parotid gland abnormalities who were examined for other diseases. 10 CT slices were obtained for each patient. From among the total of 500 CT images, 400 images (200 from 20 SjS patients and 200 from 20 control subjects) were employed as the training data set and 100 images (50 from 5 SjS patients and 50 from 5 control subjects) were used as the test data set. The performance of a deep learning system for diagnosing SjS from the CT images was compared with the diagnoses made by six radiologists (three experienced and three inexperienced radiologists).The accuracy, sensitivity, and specificity of the deep learning system were 96.0%, 100% and 92.0%, respectively. The corresponding values of experienced radiologists were 98.3%, 99.3% and 97.3% being equivalent to the deep learning, while those of inexperienced radiologists were 83.5%, 77.9% and 89.2%. The area under the curve of inexperienced radiologists were significantly different from those of the deep learning system and the experienced radiologists.The deep learning system showed a high diagnostic performance for SjS, suggesting that it could possibly be used for diagnostic support when interpreting CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
_呱_应助楼台杏花琴弦采纳,获得50
1秒前
咸鱼一号发布了新的文献求助10
1秒前
正经俠发布了新的文献求助10
1秒前
李志远完成签到,获得积分10
2秒前
ghh发布了新的文献求助10
2秒前
3秒前
77paocai完成签到,获得积分10
4秒前
CCL完成签到,获得积分10
5秒前
明亮的绫完成签到 ,获得积分10
5秒前
祖诗云完成签到,获得积分0
6秒前
jiewen发布了新的文献求助10
8秒前
8秒前
Oz完成签到,获得积分10
8秒前
zhukun发布了新的文献求助10
9秒前
9秒前
12秒前
香蕉觅云应助oliver501采纳,获得10
12秒前
正经俠完成签到 ,获得积分20
13秒前
YY完成签到 ,获得积分10
14秒前
清秀灵薇发布了新的文献求助10
14秒前
LZL完成签到 ,获得积分10
14秒前
油焖青椒完成签到,获得积分10
14秒前
不会学术的羊完成签到,获得积分10
15秒前
15秒前
lio完成签到,获得积分20
16秒前
16秒前
FashionBoy应助汤浩宏采纳,获得10
17秒前
wjwless完成签到,获得积分10
18秒前
稀罕你发布了新的文献求助10
18秒前
圣晟胜发布了新的文献求助10
18秒前
寒冷半雪完成签到,获得积分10
22秒前
善良易文发布了新的文献求助10
22秒前
orixero应助GXY采纳,获得30
22秒前
香蕉不言发布了新的文献求助10
22秒前
迅速海云发布了新的文献求助10
23秒前
xiamovivi完成签到,获得积分10
24秒前
bitahu完成签到,获得积分20
24秒前
路边一颗小草完成签到,获得积分10
24秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849