Estimating alpine snow depth by combining multifrequency passive radiance observations with ensemble snowpack modeling

积雪 环境科学 光辉 遥感 均方误差 辐射传输 大气辐射传输码 数据同化 像素 气象学 大气科学 地质学 地理 数学 计算机科学 统计 物理 量子力学 计算机视觉
作者
Rhae Sung Kim,Michael Durand,Dongyue Li,Elisabeth Baldo,S. A. Margulis,Marie Dumont,Samuel Morin
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:226: 1-15 被引量:24
标识
DOI:10.1016/j.rse.2019.03.016
摘要

This paper presents a physically-based snow depth retrieval algorithm adapted for deep mountainous snowpack and airborne multifrequency (10.7, 18.7, 37.0 and 89.0 GHz) passive microwave (PM) radiance observations from a single flight. The algorithm employs a single forecast-analysis cycle of a traditional sequential assimilation scheme. It uses an ensemble of multi-layer snowpack model runs to resolve snow microstructure and melt-refreeze crusts, and microwave radiative transfer models to relate snow properties to microwave measurements. Snow depth was retrieved at a 120 m spatial resolution over three 1 km2 Intensive Study Areas (ISA) within the Rabbit Ears Meso-Cell Study Area (MSA) from the NASA Cold Land Processes Experiment (CLPX) in Colorado (United States) for one date in February 2003. When evaluated against in situ observations, root mean square error (RMSE) of the snow depth from the assimilation was 13.3 cm for areas with low (<5%) forest cover, which was a reduction of 48% in the RMSE compared with the modeled snow depth when the PM observations were not assimilated, indicating a ~5% relative error of the posterior snow depth with respect to the average snow depth (200 cm) measured at these pixels. For pixels with forest cover ranging from 5 to 15% and 15–30%, results were improved (R2 increased from 0.65 to 0.71 and from 0 to 0.38, respectively) by introducing a forest radiative transfer model during the assimilation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色亿先发布了新的文献求助10
1秒前
田様应助anwen采纳,获得10
1秒前
领导范儿应助kk采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
Jared应助科研通管家采纳,获得10
1秒前
1秒前
ding应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
寻道图强应助科研通管家采纳,获得50
2秒前
小二郎应助科研通管家采纳,获得20
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
Jared应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
3秒前
山雀发布了新的文献求助10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
芋泥桃桃发布了新的文献求助10
3秒前
研友_Y59685完成签到 ,获得积分10
3秒前
wanci应助不安的冷荷采纳,获得10
3秒前
壮壮发布了新的文献求助10
3秒前
LewisAcid应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得30
3秒前
Ava应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
乙予安应助科研通管家采纳,获得20
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336