Reconstruction of three-dimensional porous media from a single two-dimensional image using three-step sampling

采样(信号处理) 自相关 多孔介质 样品(材料) 图像(数学) 迭代重建 数学 计算机科学 人工智能 计算机视觉 统计 多孔性 地质学 物理 滤波器(信号处理) 岩土工程 热力学
作者
MingLiang Gao,Xiaohai He,Teng Qizhi,Chen Zuo,DongDong Chen
出处
期刊:Physical Review E [American Physical Society]
卷期号:91 (1) 被引量:42
标识
DOI:10.1103/physreve.91.013308
摘要

A random three-dimensional (3D) porous medium can be reconstructed from a two-dimensional (2D) image by reconstructing an image from the original 2D image, and then repeatedly using the result to reconstruct the next 2D image. The reconstructed images are then stacked together to generate the entire reconstructed 3D porous medium. To perform this successfully, a very important issue must be addressed, i.e., controlling the continuity and variability among adjacent layers. Continuity and variability, which are consistent with the statistics characteristic of the training image (TI), ensure that the reconstructed result matches the TI. By selecting the number and location of the sampling points in the sampling process, the continuity and variability can be controlled directly, and thus the characteristics of the reconstructed image can be controlled indirectly. In this paper, we propose and develop an original sampling method called three-step sampling. In our sampling method, sampling points are extracted successively from the center of 5×5 and 3×3 sampling templates and the edge area based on a two-point correlation function. The continuity and variability of adjacent layers were considered during the three steps of the sampling process. Our method was tested on a Berea sandstone sample, and the reconstructed result was compared with the original sample, using tests involving porosity distribution, the lineal path function, the autocorrelation function, the pore and throat size distributions, and two-phase flow relative permeabilities. The comparison indicates that many statistical characteristics of the reconstructed result match with the TI and the reference 3D medium perfectly.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Research完成签到 ,获得积分10
刚刚
9秒前
13秒前
flyingpig发布了新的文献求助10
13秒前
huanir99发布了新的文献求助80
15秒前
时光不旧只是满尘灰完成签到 ,获得积分10
17秒前
xu发布了新的文献求助10
18秒前
Singularity完成签到,获得积分0
20秒前
辛勤的喉完成签到 ,获得积分10
20秒前
贝贝完成签到 ,获得积分10
22秒前
zozox完成签到 ,获得积分10
37秒前
等待小丸子完成签到,获得积分10
38秒前
ChatGPT发布了新的文献求助10
49秒前
51秒前
仰望星空发布了新的文献求助10
56秒前
IShowSpeed完成签到,获得积分10
57秒前
偷得浮生半日闲完成签到,获得积分10
1分钟前
忆茶戏完成签到 ,获得积分10
1分钟前
carl完成签到 ,获得积分10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得30
1分钟前
传奇3应助科研通管家采纳,获得30
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
害怕的小刺猬完成签到 ,获得积分10
1分钟前
认真的奇异果完成签到 ,获得积分10
1分钟前
顾矜应助Li采纳,获得10
1分钟前
木木完成签到 ,获得积分10
1分钟前
qianci2009完成签到,获得积分0
1分钟前
LINDENG2004完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
甘sir完成签到 ,获得积分10
1分钟前
Li发布了新的文献求助10
1分钟前
无辜的行云完成签到 ,获得积分0
1分钟前
华仔应助Li采纳,获得10
1分钟前
t铁核桃1985完成签到 ,获得积分0
2分钟前
含蓄的静竹完成签到 ,获得积分10
2分钟前
忧心的藏鸟完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650009
关于积分的说明 14689401
捐赠科研通 4591860
什么是DOI,文献DOI怎么找? 2519386
邀请新用户注册赠送积分活动 1491920
关于科研通互助平台的介绍 1463118