KLF2
血管保护性
辛伐他汀
肝星状细胞
下调和上调
洛伐他汀
细胞生物学
一氧化氮
药理学
癌症研究
医学
化学
生物
内分泌学
生物化学
胆固醇
基因
作者
Giusi Marrone,Lucía Russo,Eugenio Rosado,Diana Hide,Guillermo García‐Cardeña,Juan Carlos García–Pagán,Jaime Bosch,Jordi Gracia‐Sancho
标识
DOI:10.1016/j.jhep.2012.08.026
摘要
Statins improve hepatic endothelial function and liver fibrosis in experimental models of cirrhosis, thus they have been proposed as therapeutic options to ameliorate portal hypertension syndrome. The transcription factor Kruppel-like factor 2 (KLF2) may be induced by statins in liver sinusoidal endothelial cells (SEC), orchestrating an efficient vasoprotective response. The present study aimed at characterizing whether KLF2 mediates statins-derived hepatic protection.Expression of KLF2 and its vasoprotective target genes was determined in SEC freshly isolated from control or CCl(4)-cirrhotic rats treated with four different statins (atorvastatin, mevastatin, simvastatin, and lovastatin), in the presence of mevalonate (or vehicle), under static or controlled shear stress conditions. KLF2-derived vasoprotective transcriptional programs were analyzed in SEC transfected with siRNA for KLF2 or siRNA-control, and incubated with simvastatin. Paracrine effects of SEC highly-expressing KLF2 on the activation status of rat and human hepatic stellate cells (HSC) were evaluated.Statins administration to SEC induced significant upregulation of KLF2 expression. KLF2 upregulation was observed after 6h of treatment and was accompanied by induction of its vasoprotective programs. Simvastatin vasoprotection was inhibited in the presence of mevalonate, and was magnified in cells cultured under physiological shear stress conditions. Statin-dependent induction of vasoprotective genes was not observed when KLF2 expression was muted with siRNA. SEC overexpressing KLF2 induced quiescence of HSC through a KLF2-nitric oxide-guanylate cyclase-mediated paracrine mechanism.Upregulation of hepatic endothelial KLF2-derived transcriptional programs by statins confers vasoprotection and stellate cells deactivation, reinforcing the therapeutic potential of these drugs for liver diseases that course with endothelial dysfunction.
科研通智能强力驱动
Strongly Powered by AbleSci AI