Pyrolytic synthesis of boron-doped graphene and its application as electrode material for supercapacitors

超级电容器 电容 电极 电化学 电解质 氧化物 碳纤维 剥脱关节 循环伏安法 比表面积 纳米片 热解
作者
Lengyuan Niu,Zhangpeng Li,Wei Hong,Jinfeng Sun,Zhaofeng Wang,Limin Ma,Jinqing Wang,Shengrong Yang
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:108: 666-673 被引量:159
标识
DOI:10.1016/j.electacta.2013.07.025
摘要

Abstract Chemical doping with foreign atoms is an effective approach to intrinsically modify the properties of the carbon materials. Herein, boron-doped graphene (BG) was prepared through pyrolysis of graphene oxide (GO) with boric acid (H 3 BO 3 ) in an argon atmosphere at 900 °C. Both boron-doping and reduction of GO to graphene were simultaneously achieved under the thermal treatment processing. Namely, at high temperature condition, H 3 BO 3 was converted into boron oxide (B 2 O 3 ) accompanied by diffusing B 2 O 3 vapor into the graphene nanosheets, then boron atoms can replace the carbon atoms inside the graphene layers and thereby substitutionally doped into the graphene lattice. The boron content in BG increased with prolonging the reaction time and reached the highest value of 4.7% after 3 h of pyrolysis, which in turn affected their electrochemical properties. The as-prepared electrode of BG-900-3h exhibits the highest capacitive behavior (172.5 F g −1 , 0.5 A g −1 ) and superior cycling stability (maintaining 96.5% of initial capacity after 5000 times of cycling). Remarkably, the boron-doping increased the capacitance of BG-900-3h by about 80% compared to pristine graphene. These results imply that the doping of boron into graphene lattice induces remarkable performance enhancement, and thus make the doped materials superior to those of pristine graphene as electrode materials for supercapacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhanghw发布了新的文献求助10
刚刚
Frank完成签到,获得积分10
刚刚
桐桐应助小喵采纳,获得10
刚刚
香蕉觅云应助执笔客采纳,获得10
刚刚
light完成签到 ,获得积分10
刚刚
你仔细听完成签到,获得积分10
1秒前
1秒前
Sailzyf完成签到,获得积分10
1秒前
抓恐龙发布了新的文献求助10
1秒前
1秒前
汉堡包应助言小采纳,获得10
2秒前
Chen发布了新的文献求助10
2秒前
lql233完成签到,获得积分20
2秒前
雪白问兰完成签到 ,获得积分10
2秒前
2秒前
魅力蜗牛完成签到,获得积分10
2秒前
2秒前
upup小李完成签到 ,获得积分10
3秒前
手帕很忙完成签到,获得积分10
3秒前
害羞含雁发布了新的文献求助10
3秒前
3秒前
zp完成签到 ,获得积分10
3秒前
ren发布了新的文献求助10
4秒前
Lucas应助踏实的小海豚采纳,获得10
4秒前
Lucas应助2go采纳,获得10
4秒前
Jasper应助日月山河永在采纳,获得10
5秒前
5秒前
6秒前
6秒前
慕青应助没有名称采纳,获得10
6秒前
HEIKU应助聪慧的机器猫采纳,获得10
6秒前
拼搏翠桃发布了新的文献求助10
7秒前
8个老登发布了新的文献求助10
8秒前
8秒前
hhy完成签到,获得积分10
8秒前
孙一雯发布了新的文献求助30
9秒前
9秒前
Xxxnnian完成签到,获得积分20
10秒前
fancy发布了新的文献求助10
10秒前
apple完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672