Surface-enhanced Raman spectroscopy

拉曼光谱 表面增强拉曼光谱 化学 曲面(拓扑) 分析化学(期刊) 光谱学 纳米技术 材料科学 吸附 环境化学 光学 物理 拉曼散射 数学 几何学 量子力学
作者
Jürgen Popp,Thomas G. Mayerhöfer
出处
期刊:Analytical and Bioanalytical Chemistry [Springer Nature]
卷期号:394 (7): 1717-1718 被引量:21
标识
DOI:10.1007/s00216-009-2864-z
摘要

Modern analytical tools should enable highly specific identification and characterization of inorganic and organic matter with minimal effort for sample preparation. Raman spectroscopy is one such highly specific method that enables identification of molecules through their specific molecular fingerprint information. Unfortunately the sensitivity of Raman spectroscopy is quite low, meaning that it cannot be used for the analysis of samples with low analyte concentration. One possible solution to this problem is the use of metal nanostructures or particles to enhance the intrinsically weak Raman effect. This method is known as surface enhanced Raman spectroscopy (SERS) and it combines the specificity of Raman with high sensitivity which enables analysis of samples with minimal analyte concentration. However, to develop SERS further and to convert it in a standard analytical tool several problems have to be solved. A major issue for routine application of SERS is the production of reproducible SERS substrates, which have predictable and reliable enhancement factors, because the enhancement of the Raman effect is highly dependent on the structure of the SERS substrates. The rapid development of nanotechnology has helped develop new concepts for the production of reproducible SERS substrates. In their review Ren et al. describe and compare different methods for production of SERS substrates. Further, they analyze existing methods for determination of the enhancement factors of substrates and propose, on the basis of the results from this analysis, guidelines to obtain these factors. Extremely high enhancement factors can be achieved by using dimers of gold nanoparticles, whereby the enhancement factor depends on the spacing between the two particles. Using finite element method calculations Schatz et al. investigate the optimal spacing of particles. Another possible SERS substrate consists of planar gold nanostructures, which are made by Electron Beam Lithography. These structures can be reproducibly fabricated but have an interparticle spacing which is much bigger than the optimum described by Schatz and co-workers. Using different analytical methods, the plasmon dynamics and evanescent field distributions of these substrates have been investigated. Besides employing SERS substrates, an alternative approach for the realization of SERS sensors is the use of optical fibres. Inspired by the success of optical fibre systems implementing conventional Raman spectroscopy, there is growing interest in the development of SERSactive fibres. In their review Stoddart and White discuss the development of technologies for the production of such fibres and also show the potential and challenges in these recent developments. Probably one of the most widely used type of SERS substrate employs metal colloids and their aggregates. These colloids can be used in solution and also quench the fluorescence signal of the analyte in the course of surface enhanced resonance Raman spectroscopy. This enables the highly sensitive detection of dyes in aqueous solution as described by Shadi et al. By combination of metal colloids and microfluidics, tools can be created that enable the automated and sensitive detection of substances. In their contribution Choo et al. use this approach to detect Anal Bioanal Chem (2009) 394:1717–1718 DOI 10.1007/s00216-009-2864-z
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葛博完成签到,获得积分10
刚刚
江峰发布了新的文献求助10
1秒前
2秒前
yy完成签到 ,获得积分10
3秒前
善良的冰颜完成签到 ,获得积分10
3秒前
4秒前
自然白安发布了新的文献求助10
5秒前
yy关注了科研通微信公众号
5秒前
施水蓝完成签到,获得积分10
6秒前
可爱的函函应助jimmyyyyyy采纳,获得10
7秒前
默默南晴发布了新的文献求助10
7秒前
江峰完成签到,获得积分10
8秒前
机灵的老李完成签到,获得积分10
10秒前
无聊的完成签到,获得积分10
11秒前
11秒前
李健的小迷弟应助梨凉采纳,获得10
12秒前
桐桐应助甲硝唑采纳,获得10
12秒前
烟花应助夜苍鹰采纳,获得10
13秒前
ding应助小楼一夜听风雨采纳,获得10
14秒前
爆米花应助巫马书桃采纳,获得10
14秒前
羽墨发布了新的文献求助10
14秒前
昏睡的半鬼完成签到 ,获得积分10
14秒前
15秒前
猕猴桃完成签到 ,获得积分10
17秒前
rortis应助细心青烟采纳,获得10
17秒前
小新完成签到 ,获得积分10
17秒前
江户川路飞完成签到,获得积分10
18秒前
小楼一夜听风雨完成签到,获得积分10
18秒前
蛋黄派完成签到,获得积分10
19秒前
20秒前
电致阿光完成签到,获得积分10
20秒前
香蕉觅云应助愉快的盼曼采纳,获得10
21秒前
Wei完成签到,获得积分10
21秒前
22秒前
xz完成签到,获得积分10
22秒前
23秒前
桐桐应助典雅的俊驰采纳,获得10
23秒前
24秒前
专注学习发布了新的文献求助10
24秒前
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309724
求助须知:如何正确求助?哪些是违规求助? 2942954
关于积分的说明 8511920
捐赠科研通 2618053
什么是DOI,文献DOI怎么找? 1430781
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649462