Catastrophe loss modelling of storm-surge flood risk in eastern England

浪涌 风暴 洪水(心理学) 气候变化 地理
作者
Robert M. Wood,Michael Drayton,Agnete Berger,Paul J. Burgess,Timothy F. Wright
出处
期刊:Philosophical Transactions of the Royal Society A [The Royal Society]
卷期号:363 (1831): 1407-1422 被引量:40
标识
DOI:10.1098/rsta.2005.1575
摘要

Probabilistic catastrophe loss modelling techniques, comprising a large stochastic set of potential storm-surge flood events, each assigned an annual rate of occurrence, have been employed for quantifying risk in the coastal flood plain of eastern England. Based on the tracks of the causative extratropical cyclones, historical storm-surge events are categorized into three classes, with distinct windfields and surge geographies. Extreme combinations of ‘tide with surge’ are then generated for an extreme value distribution developed for each class. Fragility curves are used to determine the probability and magnitude of breaching relative to water levels and wave action for each section of sea defence. Based on the time-history of water levels in the surge, and the simulated configuration of breaching, flow is time-stepped through the defences and propagated into the flood plain using a 50 m horizontal-resolution digital elevation model. Based on the values and locations of the building stock in the flood plain, losses are calculated using vulnerability functions linking flood depth and flood velocity to measures of property loss. The outputs from this model for a UK insurance industry portfolio include ‘loss exceedence probabilities’ as well as ‘average annualized losses’, which can be employed for calculating coastal flood risk premiums in each postcode.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌语梦发布了新的文献求助10
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
qian发布了新的文献求助10
2秒前
144发布了新的文献求助10
2秒前
2秒前
dongdong完成签到 ,获得积分10
3秒前
兴十一完成签到,获得积分10
3秒前
芝士酱完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
乐乐应助今天不加班采纳,获得10
5秒前
结实灭男发布了新的文献求助10
5秒前
星辰大海应助lxs159753采纳,获得10
5秒前
权秋尽发布了新的文献求助10
6秒前
Criminology34应助焦雯瑶采纳,获得10
6秒前
进步面包笑哈哈应助咻咻采纳,获得10
6秒前
蒲公英完成签到,获得积分10
6秒前
6秒前
天天快乐应助xaa采纳,获得10
7秒前
7秒前
深情安青应助zz采纳,获得10
7秒前
dd发布了新的文献求助10
7秒前
ccchao发布了新的文献求助10
8秒前
科研通AI6.1应助liuzhanyu采纳,获得10
8秒前
兴十一发布了新的文献求助10
9秒前
Owen应助DaemonUUU采纳,获得10
9秒前
11秒前
bruce完成签到,获得积分10
11秒前
菜菜发布了新的文献求助10
11秒前
wanci应助ww采纳,获得10
12秒前
12秒前
YY完成签到,获得积分10
12秒前
13秒前
今后应助认真的寒香采纳,获得10
13秒前
14秒前
机灵水池完成签到,获得积分10
14秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082